Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-11T20:55:34.672Z Has data issue: false hasContentIssue false

9 - Dielectric Properties

Published online by Cambridge University Press:  19 November 2021

Nikolai Bagdassarov
Affiliation:
Goethe-Universität Frankfurt Am Main
Get access

Summary

Displacement current and bounded electrical charges are responsible for rock polarization. Dielectric constant: Debye, Cole–Cole or Havriliak–Negami models. Three types of bulk polarization: polarization due to dipoles, ionic polarization, and electronic polarization. Interface polarization on grain boundaries is explained by the Maxwell–Wagner effect. At grain boundaries in contact with electrolyte fluid, electrical double layer is described by the Gouy–Chapman–Stern model. Reaction mechanisms between SiO2 and H2O may take place. Increased electrolyte concentration results in increased surface energy. Electrical flux density and dielectric losses. Dielectric properties of rocks. Energy transport, transmission and reflection coefficients of minerals for electromagnetic waves in rocks. Induced polarization of rocks. Mixing models for dielectric constant: effective medium approach, Wiener and Hashin–Shtrikman bounds, Lorenz equation and percolation model. Factors causing induced polarization in rocks and the Pelton model. Focus Box 9.1: Maxwell’s equations. Focus Box 9.2: Lorenz field and Clausius–Mossotti equation. Focus Box 9.3: Redox reactions, Warburg impedance, Nyquist plots.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature

Abramov, A. A. & Avdonin, V. M. (1997). Oxidation State of Sulfide Minerals in Beneficiation Process. Gordon and Breach Science Publishers, Amsterdam.Google Scholar
Azarov, L. V. (1960). Introduction to Solids. McGraw-Hill, New York.Google Scholar
Bakos, T., Rashkeev, S. N. & Pantelides, S. T. (2002). Reactions and diffusion of water and oxygen molecules in amorphous SiO2. Physical Review Letters 88(5), 055508. doi:10.1103/PhysRevLett.88.055508.CrossRefGoogle ScholarPubMed
Beloborodov, R., Pervukhina, M., Han, T. & Josh, M. (2017). Experimental characterization of dielectric properties in fluid saturated artificial shales. Geofluids, Article ID 1019461. https://doi.org/10.1155/2017/1019461.CrossRefGoogle Scholar
Berryman, J, G. (1995). Mixture theories for rock properties. Physics and phase relations. In: A Handbook of Physical Constants. American Geophysical Union, Washington, pp. 205228.Google Scholar
Brodie, J. B. (1969). Electrochemical dissolution of galena, MS thesis, University of British Columbia, Vancouver, B.C.Google Scholar
Brown, M., Goel, A. & Abbas, Z. (2016). Effect of electrolyte concentration on the Stern layer thickness at a charged interface. Angewandte Chemie International Edition 55, 37903794. doi:10.1002/anie.201512025.CrossRefGoogle Scholar
Bruggeman, D. (1935). Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen. Annalen der Physik 5(24), 636664.CrossRefGoogle Scholar
Carmona, R., Decoster, E., Hemingway, J., et al. (2011). Zapping rocks. Oilfield Review Spring 2011 23(1), 3652.Google Scholar
Chan, Ch. Y. & Knight, R. J. (1999). Determining of water content and saturation from dielectric measurements in layered materials. Water Resources Research 35(1), 8593.CrossRefGoogle Scholar
Chen, Y. & Or, D. (2006). Effects of Maxwell-Wagner polarization on soil complex dielectric permittivity under variable temperature and electrical conductivity. Water Resources Research 42(W06424) (14pp.). doi:10.1029/2005WR004590.CrossRefGoogle Scholar
Desmond, M., Mavrogiannis, N. & Gagnon, Z. (2012). Maxwell-Wagner polarization and frequency-dependent injection at aqueous electrical interfaces. Physical Review Letters 109, 187602.Google Scholar
Elgrishi, N., Rountree, K. J., McCarthy, B. D., et al. (2018). A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education 95, 197206. doi:10.1021/acs.jchemed.7b00361.CrossRefGoogle Scholar
Guéguen, Y. & Palciauskas, V. (1994). Introduction to the Physics of Rocks. Princeton University Press, Princeton, 294 pp.Google Scholar
Hellwege, K.-H. (1988). Einführung in die Festkörperphysik. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Josh, M. (2014). Dielectric permittivity: A petrophysical parameter for shales. Petrophysics 55, 319332.Google Scholar
Kosmulski, M. (2002). The pH-dependent surface charging and the points of zero charge. Journal of Colloid and Interface Science 253, 7787. doi:10.1006/jcis.2002.8490.CrossRefGoogle ScholarPubMed
Lasaga, A. (1997). Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton.Google Scholar
Lasaga, A. & Cygan, R. (1982). Electronic and ionic polarizabilities of silicate minerals. American Mineralogist 67, 328333.Google Scholar
Liebe, H. J., Hufford, G. A. & Manabe, T. (1991). A model for the complex permittivity of water at frequencies below 1 THz. International Journal of Infrared and Millimeter Waves 12(7), 659675.CrossRefGoogle Scholar
Lockett, V., Sedev, R. & Ralston, J. (2008). Differential capacitance of the electrical double layer in imidazolium-based ionic liquids: Influence of potential, cation size, and temperature. Journal of Physical Chemistry C 112, 74867495.CrossRefGoogle Scholar
Michihiro, Y., Mahbubar, M., Rahman, M., Nakamura, K. & Kanashiro, T. (2005). Dipole and deformation dipole polarization of ions in rock-salt structure crystals. Journal of the Physical Society of Japan 74(2), 638641.CrossRefGoogle Scholar
Nelson, S., Lindroth, D. P. & Blake, R. L. (1989). Dielectric properties of selected minerals at 1 to 22 GHz. Geophysics 54(10), 13441349. doi:10.1190/1.1442596.Google Scholar
Onari, S., Arai, T. & Kudo, K. (1977). Infrared lattice vibrations and dielectric dispersion in α−Fe2O3. Physical Review B 16, 17171721.CrossRefGoogle Scholar
Orazem, M. W. & Tribollet, B. (2018). Electrochemical Impedance Spectroscopy. Wiley & Sons, New Jersey.Google Scholar
Owen, B. B., Miller, R. C., Milner, C. E. & Cogan, H. L. (1961). The dielectric constant of water as a function of temperature and pressure. The Journal of Physical Chemistry 65(11), 20652070. doi:10.1021/j100828a035.Google Scholar
Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R. & Nelson, P. H. (1978). Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics 43, 588609.CrossRefGoogle Scholar
Pickles, C., Mouris, J. & Hutcheon, R. (2005). High-temperature dielectric properties of goethite from 400 to 3000 MHz. Journal of Materials Research 20(1), 1829. doi:10.1557/JMR.2005.0012.CrossRefGoogle Scholar
Radón, A., Łukowiec, D., Kremzer, M., Mikuła, J. & Włodarczyk, P. (2018). Electrical conduction mechanism and dielectric properties of spherical shaped Fe3O4 nanoparticles synthesized by co-precipitation method. Materials 11, 735. doi:10.3390/ma11050735.CrossRefGoogle ScholarPubMed
Reda, S. M. (2013). Electric and dielectric properties of Fe2O3/Silica nanocomposites. International Journal of Nano Science and Technology 1(5), 1728.Google Scholar
Scher, H. & Zallen, R. (1970). Critical density in percolation processes. Journal of Chemical Physics 53, 37593761.CrossRefGoogle Scholar
Schrettle, F., Kant, Ch., Lunkenheimer, P., Mayr, F., Deisenhofer, J. & Loidl, A. (2012). Wüstite: Electric, thermodynamic and optical properties of FeO. European Physical Journal B 85, 164. doi:10.1140/epjb/e2012-30201-5.Google Scholar
Sengwa, R. J., Sankhla, S., Soni, A. & Ram, B. (2007). Dielectric characterization of dry and water-saturated sandstones. Proceedings of the Indian National Science Academy 73(3), 147155.Google Scholar
Shannon, R. D. (1993). Dielectric polarizabilities of ions in oxides and fluorides. Journal of Applied Physics 73, 348. doi:10.1063/1.353856.CrossRefGoogle Scholar
Smith, M. J. (1980). Comparison of induced polarization measurements over the Elura orebody. Exploration Geophysics 11(4), 7780. doi: 10.1071/EG9804077.Google Scholar
Tarasov, A. & Titov, K. (2013). On the use of the Cole-Cole equations in spectral induced polarization. Geophysical Journal International 195, 352356. doi:10.1093/gji/ggt251.CrossRefGoogle Scholar
Telford, W., Geldart, L. & Sheriff, R. (1990). Electrical properties of rocks and minerals. Chapter 5 in: Telford, W., Geldart, L. & Sheriff, R. (Eds.) Applied Geophysics. Cambridge University Press, Cambridge, pp. 283292. doi:10.1017/CBO9781139167932.009CrossRefGoogle Scholar
Tikhonov, V. V., Boyarskii, D. A., Polyakova, O. N., Dzardanov, A. L. & Gol’tsman, G. N. (2010). Radiophysical and dielectric properties of ore minerals in 12145 GHz frequency range. Progress in Electromagnetics Research B 25, 349367.CrossRefGoogle Scholar
von Hippel, A. (1954) Dielectrics and Waves. John Wiley & Sons, New York, 284pp.Google Scholar
Yousef, M., Van Vliet, K. J. & Yildiz, B. (2017). Polarizing oxygen vacancies in insulating metal oxides under a high electric field. Physical Review Letters 119, 126002. doi:10.1103/PhysRevLett.119.126002.CrossRefGoogle Scholar
Zheng, Y., Wang, S., Feng, J., Ouyang, Z. & Li, X. (2005). Measurements of the complex permittivity of dry rocks and minerals: Application of polythene dilution method and Lichtenecker’s mixture formulae. Geophysical Journal International 163, 11951202.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Dielectric Properties
  • Nikolai Bagdassarov, Goethe-Universität Frankfurt Am Main
  • Book: Fundamentals of Rock Physics
  • Online publication: 19 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108380713.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Dielectric Properties
  • Nikolai Bagdassarov, Goethe-Universität Frankfurt Am Main
  • Book: Fundamentals of Rock Physics
  • Online publication: 19 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108380713.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Dielectric Properties
  • Nikolai Bagdassarov, Goethe-Universität Frankfurt Am Main
  • Book: Fundamentals of Rock Physics
  • Online publication: 19 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108380713.010
Available formats
×