Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-02T22:02:25.343Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  19 November 2021

Nikolai Bagdassarov
Affiliation:
Goethe-Universität Frankfurt Am Main
Get access

Summary

There are two main sources of silicate rocks in the solar system: chondrules and calcium-aluminum rich inclusions. After the stage of collisional sticking and coagulation of dust grains into rather large planetesimal bodies, the runaway and subsequent oligarchic growth resulted in the formation of four terrestrial planets. Sinking of metallic iron alloys and rising of light silicate rocks led to the shell structure of the Earth. The global circulation of material within the Earth’s mantle in the form of convection and plate tectonics is the principal driving mechanism of the global rock cycle. Geophysical methods are used to study the fine structure of the Earth’s shells, exploiting knowledge of the physical properties of rocks. Rocks are composed of mineral grains, so their classification is based on texture, structure, formation mechanisms, and fine and micro-structures of pore space and grain boundaries. Grain size or granular analysis may be performed, aiming to differentiate sedimentary rocks. This analysis uses median and sorting, and other statistical moments of grain size distributions. Focus Box 1.1: Basics of statistics: cumulative and probability density distribution functions, normal distribution.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature

Arnett, W. D. & Clayton, D. D. (1970). Explosive nucleosynthesis in stars. Nature 227, 780784.CrossRefGoogle ScholarPubMed
Arvaniti, E. C., Juenger, M. C. G., Bernal, S.A., Duchesne, J., Courard, L., Leroy, S., Provis, J. L., Klemm, A. & De Belie, N. (2015). Determination of particle size, surface area, and shape of supplementary cementitious materials by different techniques. Materials and Structures 48, 36873701; https://doi.org/10.1617/s11527-014-0431-3.CrossRefGoogle Scholar
Bear, J. (1972). Dynamics of Fluids in Porous Media. Elsevier, New York.Google Scholar
Berryman, J. G. & Blair, S. C. (1986). Use of digital image analysis to estimate fluid permeability of porous materials: Application of two-point correlation functions. Journal of Applied Physics 60(6), 19301938. https://doi.org/10.1063/1.337245.CrossRefGoogle Scholar
Boek, E. S. & Venturoli, M. (2010). Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Computers & Mathematics with Applications 59(7), 23052314. https://doi.org/10.1016/j.camwa.2009.08.063.CrossRefGoogle Scholar
Dvorkin, J., Armbruster, M., Baldwin, C. & Fang, Q. (2008). The future of rock physics: Computational methods vs. lab testing. First Break 26(9), 6368. doi:10.3997/1365-2397.26.1292.28600.CrossRefGoogle Scholar
Guéguen, Y. & Paulciauskas, V. (1994). Introduction to the Physics of Rocks. Princeton University Press, Princeton.Google Scholar
Hashin, Z. & Shtrikman, S. (1962). A variational approach to the theory of the elastic behaviour of polycrystals. Journal of the Mechanics and Physics of Solids 10(4), 343352.CrossRefGoogle Scholar
Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society Section A 65(5), 349354. http://dx.doi.org/10.1088/0370-1298/65/5/307.CrossRefGoogle Scholar
Jaeger, C. (1979). Rock Mechanics and Engineering. Cambridge University Press, Cambridge.Google Scholar
Krumbein, W. C. & Aberdeen, E. J. (1937). The sediments of Barataria Bay [Louisiana]. Journal of Sedimentary Research 7 (1), 317. https://doi.org/10.1306/D4268F8B-2B26-11D7-8648000102C1865D.Google Scholar
Markl, G. (2004). Minerale und Gesteine. Springer Spektrum Akademischer Verlag, Heidelberg.Google Scholar
Mavko, G., Mukerji, T. & Dvorkin, J. (2009). The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. Cambridge University Press, Cambridge, 2nd Ed. doi:10.1017/CBO9780511626753.CrossRefGoogle Scholar
Perfit, M. (1999). Molten rocks in motion. Nature 402, 245247.Google Scholar
Pfalzner, S., Davies, M. B., Gounelle, M., et al. (2015). The formation of the solar system. Physica Scripta 90, 068001 (18pp). doi:10.1088/0031-8949/90/6/068001.CrossRefGoogle Scholar
Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 9, 4958. https://doi.org/10.1002/zamm.19290090104.CrossRefGoogle Scholar
Rothe, P. (1994). Gesteine: Entstehung-Zerstörung-Umbildung, Wissenschaftliche Buchgesellschaft, Darmstadt.Google Scholar
Saenger, E. H., Enzmann, F., Keehm, Y. & Steeb, H. (2011). Digital rock physics: Effect of fluid viscosity on effective elastic properties. Journal of Applied Geophysics 74(4), 236241. doi:10.1016/j.jappgeo.2011.06.001.CrossRefGoogle Scholar
Schön, J. H. (2011). Physical Properties of Rocks, Handbook of Petroleum Exploration and Production, Vol. 8. Elsevier;. https://doi.org/10.1016/S1567-8032(11)08012–8.Google Scholar
Sebastian, U. (2009). Gesteinskunde. Springer Spektrum Akademischer Verlag, Heidelberg.Google Scholar
Szepesházi, R. (2008). Geotechnikai tervezés. Tervezás az EUROCODE tès a kapsolódó európai geotechnikai szabványok alapján. Business Media Magyarország Kft. (in Hungarian).Google Scholar
van der Lingen, G. J. (1969). The turbidity problem. New Zealand Journal of Geology and Geophysics 12(1), 750. doi:10.1080/00288306.1969.10420225.Google Scholar
Voigt, W. (1928). Lehrbuch der Kristallphysik. Teubner Verlag, Leipzig.Google Scholar
Willis, J. R. (1977). Bounds and self-consistent estimates for the overall moduli of anisotropic composites. Journal of the Mechanics and Physics of Solids 25(3), 185202. https://doi.org/10.1016/0022-5096(77)90022-9.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Nikolai Bagdassarov, Goethe-Universität Frankfurt Am Main
  • Book: Fundamentals of Rock Physics
  • Online publication: 19 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108380713.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Nikolai Bagdassarov, Goethe-Universität Frankfurt Am Main
  • Book: Fundamentals of Rock Physics
  • Online publication: 19 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108380713.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Nikolai Bagdassarov, Goethe-Universität Frankfurt Am Main
  • Book: Fundamentals of Rock Physics
  • Online publication: 19 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108380713.002
Available formats
×