Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-11T02:09:44.339Z Has data issue: false hasContentIssue false

5 - Permeability of Rocks

Published online by Cambridge University Press:  19 November 2021

Nikolai Bagdassarov
Affiliation:
Goethe-Universität Frankfurt Am Main
Get access

Summary

Darcy’s law connects the gradient of pressure and flow velocity in rocks via their permeability κ. Depending on flow velocity, pressure and matrix properties, there are law corrections after Forchheimer, Brinkman and Klinkenberg. Rock permeability depends on ambient pressure, temperature and deviatoric stresses. In sedimentary rocks the permeability is affected by quartz content, gravel fractions and grain sorting. There are two different permeability models for rocks: the capillary model of pores and the fracture model. For granular rocks the Kozeny–Carman equation is applicable, in which hydraulic radius and degree of tortuosity are involved. The effect of pore pressure can be described using the effective pressure transfer coefficient. Permeability and relative pore saturation are connected via the van Genuchten equation. Focus Box 5.1: Darcy flow in ducts of various geometry.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature

Berg, S., Oedai, S. & Ott, H. (2013). Displacement and mass transfer between saturated and unsaturated CO2-brine systems in sandstone. International Journal of Greenhouse Gas Control 12, 478492. doi:10.1016/j.ijggc.2011.04.005.CrossRefGoogle Scholar
Bernabé, Y. (1986). The effective pressure law for permeability in Chelmsford granite and Barre granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 23 –3, 267275.Google Scholar
Bignonnet, F. (2018). Upper bounds on the permeability of random porous media. Transport in Porous Media 122, 5776. https://doi.org/10.1007/s11242-017–0989-7.CrossRefGoogle Scholar
Brinkman, H. C. (1949). A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Applied Science Research A1(1), 2734.CrossRefGoogle Scholar
Choi, C. S. & Song, J. J. (2019). Estimation of the non‐Darcy coefficient using supercritical CO2 and various sandstones. Journal of Geophysical Research: Solid Earth 124, 442455. https://doi.org/10.1029/2018JB016292.CrossRefGoogle Scholar
Gangi, A. (1978). Variation of whole and fractured porous rock permeability with confining pressure. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 15, 249257.Google Scholar
Geertsma, J. (1974). Estimating the coefficient of inertial resistance in fluid flow through porous media. Society of Petroleum Engineers Journal 10, 445450.CrossRefGoogle Scholar
Ghabezloo, S., Sulem, J., Guédon, S. & Martineau, F. (2009). Effective stress law for the permeability of a limestone. International Journal of Rock Mechanics and Mining Sciences 46, 297306.CrossRefGoogle Scholar
Ghanizadeh, A., Bhowmik, S., Haeri-Ardakani, O., Sanei, H. & Clarkson, Ch. R. (2015). A comparison of shale permeability coefficients derived using multiple non-steady-state measurement techniques: Examples from the Duvernay Formation, Alberta (Canada), Fuel 140, 371387. https://doi.org/10.1016/j.fuel.2014.09.073.CrossRefGoogle Scholar
Guo, X., Zou, G., Wang, Y., Wang, Y. & Gao, T. (2017). Investigation of the temperature effect on rock permeability sensitivity. Journal of Petroleum Science & Engineering 156, 616622.CrossRefGoogle Scholar
Hart, D. J. & Wang, H. F. (1995). Laboratory measurements of a complete set of poroelastic moduli for Berea sandstone and Indiana limestone. Journal of Geophysical Research 100, 17 741–17 751.CrossRefGoogle Scholar
Helmig, R. (1997). Multiphase Flow and Transport Processes in the Subsurfaces : A Contribution to the Modelling of Hydrosystems. Springer, Berlin, p. 367.CrossRefGoogle Scholar
Jaeger, J. C., Cook, N. G. W. & Zimmerman, R. W. (2009). Fundamentals of Rock Mechanics. Blackwell, Malden, MA.Google Scholar
Jia, Ch., Xu, W., Wang, H., Wang, R., Yu, J. & Yan, L. (2017). Stress dependent permeability and porosity of low-permeability rock. Journal of Central South University 24, 23962405. https://doi.org/10.1007/s11771-017-3651-1.CrossRefGoogle Scholar
Keller, A. A., Roberts, P. V. & Blunt, M. J. (1999). Effect of fracture aperture variations on the dispersion of contaminants. Water Resources Research 35(1), 5563.CrossRefGoogle Scholar
Klinkenberg, L. J. (1941). The permeability of porous media to liquids and gases. American Petroleum Institute, Drilling and Productions Practices, API-41–200, 200213.Google Scholar
Kobranova, V. N. (1989). Petrophysics. Springer-Verlag, Berlin, p. 375.Google Scholar
Koplik, L., Levine, H. & Zee, A. (1983). Viscosity renormalization in the Brinkman equation. The Physics of Fluids 26, 28642870. doi:10.1063/1.864050.CrossRefGoogle Scholar
Krevor, S. C. M., Pini, R., Zuo, L. & Benson, S. M. (2012). Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resources Research 48, W02532. doi:10.1029/2011WR010859.CrossRefGoogle Scholar
Kuang, X. & Jiao, J. J. (2014). An integrated permeability-depth model for Earth’s crust. Geophysical Research Letters 41, 75397545. doi:10.1002/2014GL061999.CrossRefGoogle Scholar
Lamur, A., Kendrick, J. G., Eggertsson, G. H., Wall, R. J., Ashworth, J. D. & Lavallée, Y. (2017). The permeability of fractured rocks in pressurised volcanic and geothermal systems. Scientific Reports 7, 6173 (9). https://doi.org/10.1038/s41598-017-05460-4.Google Scholar
Lekner, J. (2007). Viscous flow through pipes of various cross-sections. European Journal of Physics 28, 521527. doi:10.1088/0143-0807/28/3/014.Google Scholar
Liu, H., Patil, P. R. & Narusawa, U. (2007). On Darcy-Brinkman equation: Viscous flow between two parallel plates packed with regular square arrays of cylinders. Entropy 9, 118131.CrossRefGoogle Scholar
Lunt, I. A., Bridge, J. S. & Tye, R. S. (2004). Development of a 3-D depositional model of braided-river gravels and sands to improve aquifer characterization. In: Bridge, J. S. & Hyndman, D. W. (Eds.) Aquifer Characterization. SEPM (Society for Sedimentary Geology) Special Publication No. 80, 139169.CrossRefGoogle Scholar
Macini, P., Mesini, E. & Viola, R. (2011). Laboratory measurements of non-Darcy flow coefficients in natural and artificial unconsolidated porous media. Journal of Petroleum Science and Engineering 77, 365374.Google Scholar
Meng, F., Baud, P., Ge, H. & Wong, T.-f. (2019). The effect of stress on limestone permeability and effective stress behavior of damaged samples. Journal of Geophysical Research 124, 376399. https://doi.org/10.1029/2018JB016526.Google Scholar
Morrow, C. A. & Lockner, D. A. (1997). Permeability and porosity of the Illinois UPH 3 drillhole granite and a comparison with other deep drillhole rocks. Journal of Geophysical Research 102(B2), 30673075.Google Scholar
Mortensen, J., Engstrom, F. & Lind, I. (1998). The relation among porosity, permeability, and specific surface of chalk from the Gorm Field, Danish North Sea. SPE Reservoir Evaluation & Engineering 1 (3), 245251. SPE-31062-PA. https://doi.org/10.2118/31062-PA.CrossRefGoogle Scholar
Neuzil, C. E. (2019). Permeability of clays and shales. Annual Review of Earth and Planetary Sciences 47, 247273.CrossRefGoogle Scholar
Oak, M. J., Baker, L. E. & Thomas, D. C. (1990). Three-phase relative permeability of Berea sandstone. Journal of Petroleum Technology 42(8), 10541061.CrossRefGoogle Scholar
Perrin, J.-C. & Benson, S. (2009). An experimental study on the influence of sub-core scale heterogeneities on CO2 distribution in reservoir rocks. Transport in Porous Media 82(1), 93109.Google Scholar
Persoff, P. & Hulen, J. B. (2001). Hydrologic characterization of reservoir metagraywacke from shallow and deep levels of the geysers vapor-dominated geothermal system, California, USA, Geothermics 30, 169192.Google Scholar
Petty, D. M. (1988). Depositional facies, textural characteristics, and reservoir properties of dolomites in Frobisher-Alida Interval in Southwest North Dakota. American Association of Petroleum Geologists Bulletin. 72(10), 12291253.Google Scholar
Rubinstein, J. & Keller, J. B. (1987). Lower bounds on permeability. The Physics of Fluids 30(10), 29192921. doi:10.1063/1.866068.CrossRefGoogle Scholar
Rubinstein, J. & Torquato, S. (1989). Flow in random porous media: mathematical formulation, variational principles, and rigorous bounds. Journal of Fluid Mechanics 206, 2546.CrossRefGoogle Scholar
Shao, J., Hu, Y., Meng, T., Song, S., Jin, P. & Feng, G. (2016). Effect of temperature on permeability and mechanical characteristics of lignite. Advances in Materials Science and Engineering, Article ID 1430641, 12 pp. http://dx.doi.org/10.1155/2016/1430641.Google Scholar
Shapiro, S. A., Khizhniak, G. P., Plotnikov, V. V., Niemann, R., Ilyushin, P. Yu. & Galkin, S. V. (2015). Permeability dependency on stiff and compliant porosities: A model and some experimental examples. Journal of Geophysical Engineering 12, 376385.CrossRefGoogle Scholar
Sruoga, P., Rubinstein, N. & Hinterwimmer, G. (2004). Porosity and permeability in volcanic rocks: A case study on the Serie Tobfera, South Patagonia, Argentina. Journal of Volcanology &Geothermal Research 132, 3143.Google Scholar
Tanikawa, W. & Shimamoto, T. (2006). Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks. Hydrology and Earth System Sciences Discussions 3, 13151338. www.hydrol-earth-syst-sci-discuss.net/3/1315/2006/.Google Scholar
van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44, 892898.CrossRefGoogle Scholar
Wang, C. Y. (2003). Slip flow in ducts. Canadian Journal of Chemical Engineering 81, 10581061.CrossRefGoogle Scholar
Weissberg, H. L. & Prager, S. (1970). Viscous flow through porous media. III. Upper bounds on the permeability for a simple random geometry. Physics of Fluids 13(12), 29582965.CrossRefGoogle Scholar
Wilkinson, D. (1985). Modified drag theory of permeability. Physics of Fluids 28(4), 10151022.CrossRefGoogle Scholar
Yang, Y. & Aplin, A. C. (2010). A permeability–porosity relationship for mudstones. Marine and Petroleum Geology 27, 16921697.Google Scholar
Zeng, Z. & Grigg, R. (2006). A criterion for non-Darcy flow in porous media. Transport in Porous Media 63(1), 5769. doi:10.1007/s11242-005-2720-3.Google Scholar
Zimmerman, R. W. & Bodvarsson, G. S. (1996). Hydraulic conductivity of rock fractures. Transport in Porous Media 23, 130.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Permeability of Rocks
  • Nikolai Bagdassarov, Goethe-Universität Frankfurt Am Main
  • Book: Fundamentals of Rock Physics
  • Online publication: 19 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108380713.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Permeability of Rocks
  • Nikolai Bagdassarov, Goethe-Universität Frankfurt Am Main
  • Book: Fundamentals of Rock Physics
  • Online publication: 19 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108380713.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Permeability of Rocks
  • Nikolai Bagdassarov, Goethe-Universität Frankfurt Am Main
  • Book: Fundamentals of Rock Physics
  • Online publication: 19 November 2021
  • Chapter DOI: https://doi.org/10.1017/9781108380713.006
Available formats
×