Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-12T11:16:02.772Z Has data issue: false hasContentIssue false

16 - Linear regression

Published online by Cambridge University Press:  05 June 2012

Steve McKillup
Affiliation:
Central Queensland University
Melinda Darby Dyar
Affiliation:
Mount Holyoke College, Massachusetts
Get access

Summary

Introduction

This chapter explains simple linear regression analysis. The different uses of correlation and regression were contrasted in Chapter 15. Correlation examines if two variables are related. Regression describes the functional relationship between a dependent and an independent variable.

Linear regression

Linear regression analysis is often used by earth scientists. For example, the equation for the regression of one variable on another may suggest hypotheses about why the two variables are related. More practically, regression can be used in situations where the dependent variable is difficult, expensive or impossible to measure, but its values can be predicted from another easily measured variable to which it is functionally related. Here is an example.

It can be quite difficult to measure the temperature of an erupting magma. In situ measurements can be made if you can safely get close enough to lower a sheathed thermocouple into the hot lava, but this is a dangerous undertaking. Optical pyrometers can be used to estimate magma temperatures from any distant position with a direct line of sight, but corrections for distance, elevation and air temperatures must be applied.

Fortunately, it has been shown that the SiO2 content of the magma varies inversely with eruption temperature: basaltic magmas tend to erupt at hotter temperatures (~1200–1300 °C) and more silicic ones at cooler temperatures (~700–800 °C). So eruption temperature can be predicted from the SiO2 content of the cooled magma, which can be accurately (and safely) measured in the laboratory after the eruption.

Type
Chapter
Information
Geostatistics Explained
An Introductory Guide for Earth Scientists
, pp. 204 - 226
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×