Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-10T16:20:04.188Z Has data issue: false hasContentIssue false

8 - Differential Equations

Published online by Cambridge University Press:  30 August 2023

Alex Gezerlis
Affiliation:
University of Guelph, Ontario
Get access

Summary

Chapter 8 starts out with a physics motivation, as well as a mathematical statement of the problems that will be tackled in later sections. Starting from differential-equation initial-value problems, the text introduces both explicit and implicit methods, like backward Euler and the fourth-order Runge-Kutta method. Emphasis is placed on the interplay between method stability and problem conditioning (stiffness). The chapter then discusses boundary-value problems, first, via a combination of the earlier machinery on initial-value problems along with root-finding techniques and, second, via a finite-difference/matrix approach, which converts the problem to a linear system of equations. Next, the chapter tackles eigenvalue problems, again, via either rootfinding plus earlier tools, or a finite-difference approach; this time, the latter turns into a matrix eigenvalue problem. The second edition discussesfinite-difference approaches to solving the diffusion equation. The chapter is rounded out by a physics project, on Poisson’s equation in two dimensions, and a problem set. The physics project introduces and uses the two-dimensional fast Fourier transform, as part of a spectral method applied to the solution of a partial differential equation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Differential Equations
  • Alex Gezerlis, University of Guelph, Ontario
  • Book: Numerical Methods in Physics with Python
  • Online publication: 30 August 2023
  • Chapter DOI: https://doi.org/10.1017/9781009303897.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Differential Equations
  • Alex Gezerlis, University of Guelph, Ontario
  • Book: Numerical Methods in Physics with Python
  • Online publication: 30 August 2023
  • Chapter DOI: https://doi.org/10.1017/9781009303897.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Differential Equations
  • Alex Gezerlis, University of Guelph, Ontario
  • Book: Numerical Methods in Physics with Python
  • Online publication: 30 August 2023
  • Chapter DOI: https://doi.org/10.1017/9781009303897.009
Available formats
×