Published online by Cambridge University Press: 15 December 2009
Photodissociation of small polyatomic molecules is an ideal field for investigating molecular dynamics at a high level of precision. The last decade has seen an explosion of many new experimental methods which permit the study of bond fission on the basis of single quantum states. Experiments with three lasers — one to prepare the parent molecule in a particular vibrational-rotational state in the electronic ground state, one to excite the molecule into the continuum, and finally a third laser to probe the products — are quite usual today. State-specific chemistry finally has become reality. The understanding of such highly resolved measurements demands theoretical descriptions which go far beyond simple models.
Although the theory of photodissociation has not yet reached the level of sophistication of experiment, major advances have been made in recent years by many research groups. This concerns the calculation of accurate multi-dimensional potential energy surfaces for excited electronic states and the dynamical treatment of the nuclear motion on these surfaces. The exact quantum mechanical modelling of the dissociation of a triatomic molecule is nowadays practicable without severe technical problems. Moreover, simple but nevertheless realistic models have been developed and compared against exact calculations which are very useful for understanding the interrelation between the potential and the nuclear dynamics on one hand and the experimental observables on the other hand.
The aim of this book is to provide an overview of the theoretical methods for treating photodissociation processes in small polyatomic molecules and the achievements in merging ab initio calculations and detailed experiments. It is primarily written for graduate students starting research in molecular physics.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.