Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-07T02:32:40.299Z Has data issue: false hasContentIssue false

14 - Recasting the species–energy hypothesis: the different roles of kinetic and potential energy in regulating biodiversity

Published online by Cambridge University Press:  05 August 2012

Andrew P. Allen
Affiliation:
National Center for Ecological Analysis and Synthesis
James F. Gillooly
Affiliation:
University of Florida
James H. Brown
Affiliation:
University of New Mexico, Albuquerque and The Santa Fe Institute
David Storch
Affiliation:
Charles University, Prague
Pablo Marquet
Affiliation:
Pontificia Universidad Catolica de Chile
James Brown
Affiliation:
University of New Mexico
Get access

Summary

Introduction

Understanding the causes and consequences of variation in biodiversity has long been a central focus of research in ecology and biogeography (von Humboldt, 1808; Hutchinson, 1959; MacArthur, 1969; Brown, 1981; Tilman, 1999; Hubbell, 2001; Clarke, this volume). Ecologists have been particularly fascinated by the latitudinal gradient of increasing biodiversity from the poles to the equator since at least the time of Darwin (1859) and Wallace (1878). Contemporary data indicate that this gradient holds for nearly all major groups of terrestrial, aquatic, and marine ectotherms, both plant and animal, and for endothermic birds and mammals (Rohde, 1992; Gaston, 2000; Allen, Brown & Gillooly, 2002; Willig, Kaufman & Stevens, 2003; Currie et al., 2004; Pautasso & Gaston, 2005; Clarke, this volume; Currie, this volume). Furthermore, fossil data indicate that this gradient has been maintained for over 200 million years (Stehli, Douglas & Newell, 1969). Despite more than 150 years of inquiry, the mechanisms responsible for the gradient are still not well understood (Allen, Brown & Gillooly, 2003; Hawkins et al., 2003; Huston et al., 2003; Storch, 2003; Currie et al., 2004; Clarke, this volume; Currie, this volume), but a large and growing list of hypotheses has been proposed to explain it (Rohde, 1992; Gaston, 2000; Hawkins et al., 2003; Currie et al., 2004).

In recent years, particular attention has focused on what we will refer to as the species–energy hypothesis, which proposes that the latitudinal biodiversity gradient has somehow been generated and maintained as a direct consequence of greater energy availability towards the equator.

Type
Chapter
Information
Scaling Biodiversity , pp. 283 - 299
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, A. P., Brown, J. H. & Gillooly, J. F. (2002). Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science, 297, 1545–1548.CrossRefGoogle ScholarPubMed
Allen, A. P., Brown, J. H. & Gillooly, J. F. (2003). Response to comment on “Global biodiversity, biochemical kinetics, and the energetic-equivalence rule”. Science, 299, 346c.CrossRefGoogle Scholar
Allen, A. P. & Gillooly, J. F. (2006). Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecology Letters, 9, 947–954.CrossRefGoogle ScholarPubMed
Allen, A. P., Gillooly, J. F. & Brown, J. H. (2005). Linking the global carbon cycle to individual metabolism. Functional Ecology, 19, 202–213.CrossRefGoogle Scholar
Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. (2006). Kinetic effects of temperature on rates of genetic divergence and speciation. Proceedings of the National Academy of Sciences of the United States of America, 103, 9130–9135.CrossRefGoogle ScholarPubMed
Alroy, J., Marshall, C. R., Bambach, R. K., et al. (2001). Effects of sampling standardization on estimates of phanerozoic marine diversification. Proceedings of the National Academy of Sciences of the United States of America, 98, 6261–6266.CrossRefGoogle ScholarPubMed
Anderson, K. J. & Jetz, W. (2005). The broad-scale ecology of energy expenditure of endotherms. Ecology Letters, 8, 310.CrossRefGoogle Scholar
Brown, J. H. (1981). Two decades of homage to Santa Rosalia: toward a general theory of diversity. American Zoologist, 21, 877–888.CrossRefGoogle Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–1789.CrossRefGoogle Scholar
Chapin, F. S. I., Matson, P. A. & Mooney, H. A. (2002). Principles of Terrestrial Ecosystem Ecology. New York: Springer-Verlag.Google Scholar
Chown, S. L. & Gaston, K. J. (2000). Areas, cradles and museums: the latitudinal gradient in species richness. Trends in Ecology and Evolution, 15, 311–315.CrossRefGoogle ScholarPubMed
Clark, J. S. & McLachlan, J. S. (2003). Stability of forest biodiversity. Nature, 423, 635–638.CrossRefGoogle ScholarPubMed
Clark, J. S. & McLachlan, J. S. (2004). Neutral theory (communication arising): the stability of forest biodiversity. Nature, 427, 696–697.CrossRefGoogle Scholar
Coyne, J. A. & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinaur Associates.Google Scholar
Crame, J. A. (2002). Evolution of taxonomic diversity gradients in the marine realm: a comparison of late Jurassic and recent bivalve faunas. Paleobiology, 28, 184–207.2.0.CO;2>CrossRefGoogle Scholar
Crane, P. R. & Lidgard, S. (1989). Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science, 246, 675–678.CrossRefGoogle ScholarPubMed
Currie, D. J. (1991). Energy and large-scale patterns of animal- and plant-species richness. American Naturalist, 137, 27–49.CrossRefGoogle Scholar
Currie, D. J., Mittelbach, G. G., Cornell, H. V., et al. (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 1121–1134.CrossRefGoogle Scholar
Darwin, C. (1859). On the Origin of Species. London: John Murray.Google Scholar
Enquist, B. J. & Niklas, K. J. (2001). Invariant scaling relations across tree-dominated communities. Nature, 410, 655–660.CrossRefGoogle ScholarPubMed
Enquist, B. J., Economo, E. P., Huxman, T. E., Allen, A. P., Ignace, D. D. & Gillooly, J. F. (2003). Scaling metabolism from organisms to ecosystems. Nature, 423, 639–642.CrossRefGoogle Scholar
Farquhar, G. D., Caemmerer, S. & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta, 149, 78–90.CrossRefGoogle Scholar
Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281, 237–240.CrossRefGoogle ScholarPubMed
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
Flessa, K. W. & Jablonski, D. (1996). The geography of evolutionary turnover: a global analysis of extant bivalves. In Evolutionary Paleobiology, ed. Jablonski, D., Erwin, D. H., and Lipps, J. H., pp. 376–397, Chicago: University of Chicago Press.Google ScholarPubMed
Gaston, K. J. (2000). Global patterns in biodiversity. Nature, 405, 220–227.CrossRefGoogle ScholarPubMed
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293, 2248–2251.CrossRefGoogle ScholarPubMed
Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. (2002). Effects of size and temperature on developmental time. Nature, 417, 70–73.CrossRefGoogle ScholarPubMed
Gillooly, J. F., Allen, A. P., West, G. B. & Brown, J. H. (2005). The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences of the United States of America, 102, 140–145.CrossRefGoogle ScholarPubMed
Hawkins, B. A., Field, R., Cornell, H. V., et al. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105–3117.CrossRefGoogle Scholar
Hubbell, S. P. (2001). A Unified Neutral Theory of Biodiversity and Biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Hubbell, S. P. (2003). Modes of speciation and the lifespans of species under neutrality: a response to the comment of Robert E. Ricklefs. Oikos, 100, 193–199.CrossRefGoogle Scholar
Huston, M. A., Brown, J. H., Allen, A. P. & Gillooly, J. F. (2003). Heat and biodiversity. Science, 299, 512–513.CrossRefGoogle ScholarPubMed
Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals. American Naturalist, 93, 145–159.CrossRefGoogle Scholar
Huxman, T. E., Smith, M. D., Fay, P. A., et al. (2004). Convergence across biomes to a common rain-use efficiency. Nature, 429, 651–654.CrossRefGoogle ScholarPubMed
Jablonski, D. (1993). The tropics as a source of evolutionary novelty through geological time. Nature, 364, 142–144.CrossRefGoogle Scholar
Kaspari, M. (2001). Taxonomic level, trophic biology and the regulation of local abundance. Global Ecology and Biogeography, 10, 229–244.CrossRefGoogle Scholar
Kaspari, M. (2005). Global energy gradients and size in colonial organisms: worker mass and worker number in ant colonies. Proceedings of the National Academy of Sciences of the United States of America, 102, 5079–5083.CrossRefGoogle ScholarPubMed
Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lande, R., Engen, S. & Saether, B. E. (2003). Stochastic Population Dynamics in Ecology and Conservation. Oxford: Oxford University Press.CrossRefGoogle Scholar
Lieth, H. (1973). Primary production: terrestrial ecosystems. Human Ecology, 1, 303–332.CrossRefGoogle Scholar
MacArthur, R. H. (1969). Patterns of communities in the tropics. Biological Journal of the Linnean Society, 1, 19–31.CrossRefGoogle Scholar
Mayr, E. (1942). Systematics and the Origin of Species from the Viewpoint of a Zoologist. New York: Columbia University Press.Google Scholar
Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9, 747–766.CrossRefGoogle Scholar
Mueller, P. & Diamond, J. (2001). Metabolic rate and environmental productivity: well-provisioned animals evolved to run and idle fast. Proceedings of the National Academy of Sciences of the United States of America, 98, 12550–12554.CrossRefGoogle ScholarPubMed
Pautasso, M. & Gaston, K. J. (2005). Resources and global avian assemblage structure in forests. Ecology Letters, 8, 282–289.CrossRefGoogle Scholar
Ricklefs, R. E. (2003). A comment on Hubbell's zero-sum ecological drift model. Oikos, 100, 185–192.CrossRefGoogle Scholar
Rohde, K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65, 514–527.CrossRefGoogle Scholar
Rosenzweig, M. L. (1975). On continential steady states of biodiversity. In Ecology and Evolution of Communities, ed. Cody, M. L. and Diamond, J. M., pp. 121–140, Cambridge: MA: Belnap Press.Google Scholar
Savage, V. M. (2004). Improved approximations to scaling relationships for species, populations, and ecosystems across latitudinal and elevational gradients. Journal of Theoretical Biology, 227, 525–534.CrossRefGoogle ScholarPubMed
Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. (2004). Effects of body size and temperature on population growth. American Naturalist, 163, E429–E441.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. (1978). A kinetic model of phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology, 4, 223–251.CrossRefGoogle Scholar
Stanley, H. E. (1998). Macroevolution, Pattern and Process. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Stehli, F. G., Douglas, D. G. & Newell, N. D. (1969). Generation and maintenance of gradients in taxonomic diversity. Science, 164, 947–949.CrossRefGoogle ScholarPubMed
Storch, D. (2003). Comment on “Global biodiversity, biochemical kinetics, and the energetic-equivalence rule”. Science, 299, 346b.CrossRefGoogle Scholar
Tilman, D. (1999). The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80, 1455–1474.Google Scholar
Vitousek, P. M. (1984). Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65, 285–298.CrossRefGoogle Scholar
Volkov, I., Banavar, J. R., Maritan, A. & Hubbell, S. P. (2004). Neutral theory (communication arising): the stability of forest biodiversity. Nature, 427, 696.CrossRefGoogle Scholar
Humboldt, A. (1808). Ansichten der Natur mit wissenschaftlichen Erlauterungen. Tubingen: J. G. Cotta.Google Scholar
Wallace, A. R. (1878). Tropical Nature and Other Essays. London: Macmillan.CrossRefGoogle Scholar
West, G. B., Brown, J. H. & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122–126.CrossRefGoogle ScholarPubMed
Willig, M. R., Kaufman, D. M. & Stevens, R. D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273–309.CrossRefGoogle Scholar
Wright, D. H. (1983). Species-energy theory: an extension of species-area theory. Oikos, 41, 496–506.CrossRefGoogle Scholar
Wright, D. H., Currie, D. J. & Maurer, B. A. (1993). Energy supply and patterns of species richness on local and regional scales. In Species Diversity in Ecological Communities, ed. Ricklefs, R. E. and Schluter, D., pp. 66–74, Chicago: University of Chicago Press.Google Scholar
Yule, G. U. (1925). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philosophical Transactions of the Royal Society of London, Series B, 213, 21–87.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×