Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-11T16:57:09.493Z Has data issue: false hasContentIssue false

2 - Development of Static High-Pressure Techniques and the Study of the Earth’s Deep Interior in the Last 50 Years and Its Future

Published online by Cambridge University Press:  03 August 2023

Yingwei Fei
Affiliation:
Carnegie Institution of Washington, Washington DC
Michael J. Walter
Affiliation:
Carnegie Institution of Washington, Washington DC
Get access

Summary

Development of static high-pressure techniques over the last 50 years is reviewed from the perspective of the study of the Earth’s deep interior. Fifty years ago, laboratory high-pressure and -temperature experiments were limited to the conditions corresponding to that of near the surface of the Earth. In high-pressure mineral physics, extension of the pressure range directly made possible the study of deeper parts of the Earth, and many scientists spent great effort to improve various experimental techniques. As a result, currently it is possible to do precise X-ray experiments at the conditions corresponding to the center of the Earth: 6,400 km depth from the surface, about 360 GPa, and more than 5,000 K. Two quite different types of high-pressure apparatus are widely used these days. One is the large-volume high-pressure apparatus, and the other is the diamond anvil cell. Although the latter has the advantage of covering wider pressure and temperature conditions together with optical access to the sample, the former has the advantage of much larger sample volume, and, using internal resistance heaters, very stable and uniform high-temperature conditions can be achieved. Many different types of experimental techniques are combined with these high-pressure devices, and rich information about various properties of minerals and melts can now be obtained. Advancement of synchrotron radiation played a key role for such studies, and our knowledge about the Earth’s deep interior has increased considerably. Further efforts are continuing to extend the pressure range beyond the limits of existing high-pressure devices.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×