Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-10T15:02:51.761Z Has data issue: false hasContentIssue false

4 - Variable Earth Rotation

Published online by Cambridge University Press:  01 October 2018

Dennis D. McCarthy
Affiliation:
United States Naval Observatory
P. Kenneth Seidelmann
Affiliation:
University of Virginia
Get access

Summary

The reality of the rotation of the Earth was not generally accepted until the 15th century. The connection between the secular acceleration of the Moon’s motion and the secular retardation of the Earth’s rotation rate was considered in the mid-19th century, but the values did not agree. Newcomb investigated the possibility of variation in the Earth’s rotation rate, but was unable to prove it. R. T. A. Innes, H. Spencer Jones, and W. de Sitter provided evidence of the variations in the 1920s based on observations of the Sun, Moon, Mercury, Venus, and Mars. Various explanations for the variations were proposed, but now low-frequency and higher-frequency variations in the Earth’s rotation are recognized. Because the Earth's rotation was known to be variable, a uniform time was needed for ephemerides. This led to the introduction of Ephemeris Time and the use of more precise quartz crystal and atomic clocks. Also, observations of the Earth’s rotation led to the field of Earth orientation sciences, combining astronomy, geodesy, and geophysics.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. C. (1853). On the Secular Variation of the Moon’s Mean Motion. Phil. Trans. Royal Soc. London, CXLIII, 397406.Google Scholar
Brosche, P. (1984). Tidal Friction in the Earth–Moon System. Phil. Trans. Royal Soc. London A, 313, 7175.Google Scholar
Brouwer, D. (1952). A Study of the Changes in the Rate of Rotation of the Earth. Astron. J., 57, 125146.CrossRefGoogle Scholar
Brown, E. W. (1914). Address on Cosmical Physics. British Assoc. Report Australia, 311–321, Science, New Series, 40, 389401.Google Scholar
Brush, S. G. (1986). Early History of Selenology. In Origin of the Moon: Proceedings of the Conference, Kona, HI, October 13–16, 1984. Houston, TX: Lunar and Planetary Institute, pp. 315.Google Scholar
Carter, B. & Carter, M. S. (2006). Simon Newcomb, America’s Unofficial Astronomer Royal. St. Augustine, FL: Mantanzas Publishing.Google Scholar
Chapront, J., Chapront-Touze, M., & Francoou, G. (2002). A New Determination of Lunar Orbital Parameters, Precession Constant, and Tidal Acceleration from LLR Measurements. Astron. & Astrophys., 387, 700709.Google Scholar
Christodoulidis, D. C., Smith, D. E., Williamson, R. G., & Klosko, S. M. (1988). Observed Tidal Braking in the Earth/Moon/Sun System. J. Geophys. Res., 93, 62166236.Google Scholar
Clemence, G. M. (1943).The Motion of Mercury 1765–1937. Astronomical Papers of the American Ephemeris and Nautical Almanac, vol. XI, Part I. Washington, DC: US Government Printing Office.Google Scholar
Clemence, G. M. (1971). The Concept of Ephemeris Time: A Case of Inadvertent Plagiarism. J. History of Astronomy, 2, 7379.Google Scholar
Darwin, G. H. (1877). On the Influence of Geological Changes on the Earth’s Axis of Rotation. Phil. Trans. Royal Soc. London, 167, 271.Google Scholar
Darwin, G. H. (1879). On the Precession of a Viscous Spheroid and on the Remote History of the Earth. Phil. Trans. Royal Soc. London, 170, 447530.Google Scholar
Darwin, G. H. (1880). On the Secular Change of the Orbit of a Satellite Revolving about a Tidally Distorted Planet. Phil. Trans. Royal Soc. London, 171, 713891.Google Scholar
Darwin, G. H. (1898). Tides and Kindred Phenomena in the Solar System. Boston, MA, and New York, NY: Houghton Mifflin and Company.Google Scholar
de Sitter, W. (1927). On the Secular Accelerations and the Fluctuations of the Longitudes of the Moon, the Sun, Mercury and Venus. Bull. of Astron. Inst. of Netherlands, IV, 2138.Google Scholar
Dehant, V., de Viron, O., & van Hoolst, T. (2005). Poincaré Flow in the Earth’s Core. In Capitaine, N., ed., Journées 2004 – systèmes de référence spatio-temporels. Fundamental Astronomy: New Concepts and Models for High Accuracy Observations, Paris, 20–22 September 2004. Paris: Observatoire de Paris.Google Scholar
Delaunay, C.-E. (1859). Comptes Rendus Acad Sci Paris (Séance du 25/4/1859) 48, 817.Google Scholar
Delaunay, C.-E. (1866). Conférence sur l’astronomie et en particulier sur le ralentissement du mouvement de rotation de la terre. Paris: G. Bailliere.Google Scholar
Dreyer, J. L. E. (1953). The History of Astronomy from Thales to Kepler. Dover Publications.Google Scholar
Dunthorne, R. (1747). A Letter from Mr. Richard Dunthorne, to the Rev. Mr. Cha. Mason, F. R. S. and Woodwardian Professor of Nat. Hist. at Cambridge, Concerning the Moon’s Motion. Philosophical Transactions, 44, 412420.Google Scholar
Dunthorne, R. (1749). A Letter from the Rev. Mr. Richard Dunthorne to the Reverend Mr. Richard Mason F. R. S. and Keeper of the Woodwardian Museum at Cambridge, Concerning the Acceleration of the Moon. Philosophical Transactions, 46, 162172.Google Scholar
Dyson, F., Sir & Crommelin, A. C. D. (1923). The Greenwich Observations of the Moon. Monthly Notices Roy. Astron. Soc., 83, 359370.Google Scholar
Eubanks, T. M. (1993). Variations in the Orientation of the Earth. In Smith, David E. & Turcotte, Donald L., eds., Contributions of Space Geodesy to Geodynamics: Earth Dynamics: Geodynamic Series, vol. 24. Washington, DC: American Geophysical Union, p. 1.Google Scholar
Explanatory Supplement to The Astronomical Ephemeris and The American Ephemeris and Nautical Almanac (1961). London: Her Majesty’s Stationery Office.Google Scholar
Explanatory Supplement to the Astronomical Almanac (1992). Kenneth Seidelmann, P., ed. Mill Valley, CA: University Science Books.Google Scholar
Ferrari, A. J., Sinclair, W. S., Sjogren, W. L., Williams, J. G., & Yoder, C. F. (1980). J. Geophys. Res., 85, 3939.Google Scholar
Ferrel, W. (1853). On the Effect of the Sun and Moon upon the Rotatory Motion of the Earth. Astron. J., 3, 138141.Google Scholar
Ferrel, W. (1864). Note on the Influence of the Tides in Causing an Apparent Secular Acceleration of the Moon’s Mean Motion. Proc. of American Academy of Arts and Sciences, VI, 379383, 390393.Google Scholar
Finch, H. (1950). On a Periodic Fluctuation in the Length of the Day. Monthly Notices Roy. Astron. Soc., 110, 3.Google Scholar
Folkner, W. M., Williams, J. G., Boggs, D. H., Park, R. S., & Kuchynka, P. (2014). The Planetary and Lunar Ephemerides DE430 and DE431. The Interplanetary Network Progress Report, 42 –196, 181.Google Scholar
Fotheringham, J. K. (1920). The Longitude of the Moon from 1627 to 1918. Monthly Notices Roy. Astron. Soc., 80, 289.CrossRefGoogle Scholar
Ginzel, F. K. (1899). Bemerkungen über den Werth der alten historischen Sonnenfinsterniss für die Mondtheorie. Astron. Nachr., 150, 1.CrossRefGoogle Scholar
Glauert, H. (1915a). The Rotation of the Earth. Monthly Notices Roy. Astron. Soc., 75, 489495.Google Scholar
Glauert, H. (1915b). The Rotation of the Earth. Monthly Notices Roy. Astron. Soc., 75, 685687.CrossRefGoogle Scholar
Halley, E. (1695). Some Account of the Ancient State of the City of Palmyra, with Short Remarks upon the Inscriptions Found There. Phil. Trans. Roy. Soc., 19, 160.Google Scholar
Innes, R. T. A. (1925a). Transits of Mercury 1677–1924. Union Observatory Circ. No. 65.Google Scholar
Innes, R. T. A. (1925b). Variability of the Earth’s Rotation. Astron. Nachr. 25, 109.Google Scholar
Jeffreys, H. (1924). The Earth: Its Origin, History and Physical Constitution. Cambridge: Cambridge University Press.Google Scholar
Kant, I. (1754). Untersuchung der Frage, ob die Erde in ihrer Umdrehung um die Achse, wodurch sie die Abwechselung des Tages und der Nacht hervorbringt, einige Veränderung seit den ersten Zeiten ihres Ursprungs erlitten habe und woraus man sich ihrer versichern könne, welche von der Königlichen Akademie der Wissenschaften zu Berlin zum Preise für das jetztlaufende Jahr aufgegeben worden, English: Investigation of the Question, Whether the Axial Rotation of the Earth, through Which Day and Night Are Brought About, Has Changed since Its Beginning, and How One Can Be Certain of this, Which the Royal Academy of Sciences in Berlin Has Offered a Prize for the Current Year. In Wochentliche Königsbergische Frag- und Anzeigungs-Nachrichten #23 (June 8) and #24 (June 15). [Ak. 1: 185191]Google Scholar
Lalande, J. Traité d’astronomie (2 vols., 1764 enlarged edition, 4 vols., 1771–1781; 3rd edn, 3 vols., 1792).Google Scholar
Lambeck, K. (1980). The Earth’s Variable Rotation: Geophysical Causes and Consequences. Cambridge: Cambridge University Press.Google Scholar
Laplace, P.-S. de (1786). Sur l’équation séculaire de la Lune. Mém. Acad. Roy. Sci., 235.Google Scholar
Markowitz, W. (1955). The Annual Variation in the Rotation of the Earth, 1951–4. Astron. J., 59, 69.Google Scholar
Mayer, J. R. (1848). Beiträge zur Dynamik des Himmels, chap. 8. Heilbronn: Landherr.Google Scholar
Mayer, T. (1753). Novae Tabulae Motuum Solis et Lunae. In Commentarii Societatis Regiae Scientiarum Gottingensis, vol. II. Göttingen.Google Scholar
Mintz, Y. & Munk, W. (1953). The Effect of Winds and Bodily Tides on the Annual Variation in the Length of Day. Monthly Notices Roy. Astron. Soc., 113, 789.Google Scholar
Mitrovica, J. X., Hay, C. C., Morrow, E., Kopp, R. E., Dumberry, M., & Stanley, S. (2015). Reconciling Past Changes in Earth’s Rotation with 20th Century Global Sea-Level Rise: Resolving Munk’s Enigma. Science Advances, 11 Dec. 2015: 1(11), e1500679. doi:10.1126/sciadv.1500679CrossRefGoogle ScholarPubMed
Mound, J. E. & Buffett, B. A. (2003). Interannual Oscillations in Length of Day: Implications for the Structure of the Mantle and Core. Journal of Geophysical Research Solid Earth, 108(B7), pp. ETG 2–1, CiteID 2334. Doi:10.1029/2002JB002054.Google Scholar
Munk, W. H. (1966). Variation of the Earth’s Rotation in Historical Time. In Marsden, B. G. & Cameron, A. G. W., eds., The Earth–Moon System. New York, NY: Plenum Press.Google Scholar
Munk, W. H. & MacDonald, G. J. F. (1960). The Rotation of the Earth. Cambridge: Cambridge University Press.Google Scholar
Munk, W. H. & Miller, R. L. (1950). Variations in the Earth’s Angular Velocity Resulting from Fluctuations in Atmospheric and Ocean Circulation. Tellus, 2, 93101.CrossRefGoogle Scholar
Munk, W. H. & Revelle, R. (1952). On the Geophysical Interpretation of Irregularities in the Rotation of the Earth. Monthly Notices Roy. Astron. Soc. Geophysical Supplement, 6, 331.Google Scholar
Newcomb, S. (1896). Comptes Rendus Acad Sci Paris, vol. 1 cxxii, 1238.Google Scholar
Newcomb, S. (1903a). The Reminiscences of an Astronomer. Boston, MA, and New York, NY: Houghton Mifflin and Company.Google Scholar
Newcomb, S. (1903b). On the Desirableness of Re-Investigation of the Problems Growing Out of the Mean Motion of the Moon, Monthly Notices Roy. Astron. Soc., 63, 318324.Google Scholar
Newcomb, S. (1906). Side-Lights on Astronomy and Kindred Fields of Popular Science. Essays and Addresses. London and New York, NY: Harper & Brothers.Google Scholar
Newton, I. (1713). Philosophia Naturalis Principia Mathematica, 2nd edn. Cambridge, 481.Google Scholar
Pavel, F. & Uhink, W. (1935). Die Quarzuhren des Geodätischen Instituts in Potsdam. Astron. Nachr., 257, 365390.CrossRefGoogle Scholar
Ross, F. E. & Newcomb, S. (1917). New Elements of Mars and Tables for Correcting the Heliocentric Positions Derived from Astronomical Papers. Astronomical Papers of the AENA, IX, part II. Washington, DC: US Government Printing Office.Google Scholar
Runcorn, S. K. (1954). The Earth’s Core. Trans. American Geophys. Union, 35, 49.Google Scholar
Scheibe, A. & Adelsberger, U. (1936). Nachweis von Schwankungen der astronomischen Tageslange mittels Quarzuhren. Phys. Zeitschrift, 37, 38.Google Scholar
Scheibe, A. & Adelsberger, U. (1950). Die Gangleistungen der PTR-Quarzuhren und die jahrliche Schwankung der astronomischen Tageslange. Zeitschrift fur Physik, 127, 416.Google Scholar
Smith, H. & Tucker, R. (1953). The Annual Fluctuation in the Rate of Rotation of the Earth. Monthly Notices Roy. Astron. Soc., 113, 251.CrossRefGoogle Scholar
Spencer Jones, H. (1926). The Rotation of the Earth. Monthly Notices Roy. Astron. Soc., 87, 431.Google Scholar
Spencer Jones, H. (1932). Discussion of Observations of Occultations of Stars by the Moon, 1672–1908 Being a Revision of Newcomb’s “Researches on the Motion of the Moon, Part II.” Annals of the Cape Observatory, XIII.Google Scholar
Spencer Jones, H. (1939). The Rotation of the Earth and the Secular Acceleration of the Sun, Moon, and Planets. Monthly Notices Roy. Astron. Soc., 99, 541.CrossRefGoogle Scholar
Stephenson, F. R. (2003). Historical Eclipses and Earth Rotation. Astronomy and Geophysics, 44, 222227.Google Scholar
Stephenson, F. R., Morrison, L. V., & Hohenkerk, C. Y. (2016). Measurements of the Earth’s Rotation: 720 BC to AD 2015. Proc. Royal Soc. A, 472, 20160404. http://dx.Doi.org/10.1098/rspa.2016.0404.Google Scholar
Stoyko, N. (1937). Sur la périodicité dans l’irrégularité de la rotation de la Terre. Comptes Rendus Acad. Sciences, 205, 7981.Google Scholar
Stoyko, N. (1950). Sur la variation saisonnière de la rotation de la terre. Comptes Rendus Acad. Sciences, 230, 514.Google Scholar
Thomson, W. (1863). On the Rigidity of the Earth. Phil. Trans. Royal Soc. London, 153, 573582.Google Scholar
Thomson, W. & Tait, P. G. (1890). Treatise on Natural Philosophy. Cambridge: Cambridge University Press, para. 405 (footnote).Google Scholar
Tobin, W. (2003). The Life and Science of Léon Foucault: The Man Who Proved the Earth Rotates. Cambridge: Cambridge University Press.Google Scholar
Van den Dungen, F. H., Cox, F. J., & van Mieghem, J. (1949). Sur les fluctuations de periode annuelle de la rotation de la terre. Bull. Acad. Belg. Cl. Sci., 35, 642655.Google Scholar
Vestine, E. H. (1953). On Variations of the Geomagnetic Field, Fluid Motions, and the Rate of the Earth’s Rotation. Journ. Geophys. Res., 58, 127.Google Scholar
Williams, J. G. & Boggs, D. H. (2016). Secular Tidal Changes in Lunar Orbit and Earth Rotation. Celest. Mech. & Dynam. Astron., 126, 89129.Google Scholar
Williams, J. G., Boggs, D. H., & Folkner, W. M. (2008). DE421 Lunar Orbit, Physical Librations, and Surface Coordinates. IOM 335-JW, DB, WF–20080314–001.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×