Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-01T19:56:18.857Z Has data issue: false hasContentIssue false

Chapter Fourteen - The role of trait-mediated indirect interactions for multispecies plant–animal mutualisms

Published online by Cambridge University Press:  05 February 2013

Rebecca E. Irwin
Affiliation:
Biology Department, Dartmouth College
Takayuki Ohgushi
Affiliation:
Kyoto University, Japan
Oswald Schmitz
Affiliation:
Yale University, Connecticut
Robert D. Holt
Affiliation:
University of Florida
Get access

Summary

Introduction

Organisms experience myriad interactions with both antagonists and mutualists. There is widespread recognition that these multispecies interactions are not independent and that community membership can have important consequences for host fitness as well as patterns of natural selection (Strauss and Irwin 2004; Morris et al. 2007). For example, herbivore feeding can influence plant interactions with other herbivores or mutualists (e.g., pollinators), which can have subsequent effects on host plant fitness (Karban and Baldwin 1997; Mothershead and Marquis 2000; Strauss et al. 2001). Moreover, traits involved in these multispecies interactions can represent an adaptive compromise due to host interactions with antagonists and mutualists (Galen and Cuba 2001). While the effects of antagonist–antagonist and antagonist–mutualist interactions on hosts have received attention from both theoreticians and empiricists, the ecological and evolutionary consequences of host interactions with multiple mutualists have received less study (Hoeksema and Bruna 2000). That the study of multispecies mutualisms has lagged behind other suites of multispecies interactions is not surprising, given that mutualisms in general receive less study than competition and predation (Bronstein 1994). However, because many species interact with multiple mutualists either simultaneously or sequentially throughout their lifetimes (Janzen 1985) and mutualisms can have powerful impacts on host fitness and evolution (Bronstein et al. 2006), it is germane to ask how these multispecies mutualisms affect the ecology and evolution of their shared hosts (also see Stanton 2003).

Type
Chapter
Information
Trait-Mediated Indirect Interactions
Ecological and Evolutionary Perspectives
, pp. 257 - 277
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, P. A.Menge, B. A.Mittelbach, G. G.Spiller, D. A.Yodzis, P. 1996 The role of indirect effects in food websPolis, G. A.Winemiller, K. O.Food Webs: Integration of Patterns and DynamicsNew YorkChapman and Hall371CrossRefGoogle Scholar
Allen, M. F.Birks, H. J. B.Weins, J. A. 1991 The Ecology of MycorrhizaeCambridgeCambridge University PressGoogle Scholar
Altshuler, D. L. 1999 Novel interactions of non-pollinating ants with pollinators and fruit consumers in a tropical forestOecologia 119 600CrossRefGoogle Scholar
Arimura, G.Kost, C.Boland, W. 2005 Herbivore-induced, indirect plant defencesBiochemica et Biophysica Acta 1734 91CrossRefGoogle ScholarPubMed
Bascompte, J.Jordano, P. 2007 Plant-animal mutualistic networks: the architecture of biodiversityAnnual Review of Ecology, Evolution, and Systematics 38 567CrossRefGoogle Scholar
Böhning-Gaese, K.Gaese, B. H.Rabemanantsoa, S. B. 1999 Importance of primary and secondary seed dispersal in the Malagasy tree Ecology 80 821CrossRefGoogle Scholar
Boucher, D. H. 1982 The ecology of mutualismAnnual Review of Ecology and Systematics 13 315CrossRefGoogle Scholar
Bronstein, J. L. 1994 Our current understanding of mutualismQuarterly Review of Biology 69 31CrossRefGoogle Scholar
Bronstein, J. L. 2001 The costs of mutualismAmerican Zoologist 41 825Google Scholar
Bronstein, J. L.Alarcon, R.Geber, M. 2006 The evolution of plant-insect interactionsNew Phytologist 172 412CrossRefGoogle Scholar
Broyles, S. B.Sherman-Broyles, S. L.Rogati, P. 1997 Evidence of outcrossing in and (Liliaceae)Journal of Heredity 88 325CrossRefGoogle Scholar
Cahill, J. F.Elle, E.Smith, G. R.Shore, B. Y. 2008 Disruption of a belowground mutualism alters interactions between plants and their floral visitorsEcology 89 1791CrossRefGoogle ScholarPubMed
Choh, Y.Kugimiya, S.Takabayashi, J. 2006 Induced production of extrafloral nectar in intact lima bean plants in response to volatiles from spider mite-infested conspecific plants as a possible indirect defense against spider mitesOecologia 147 455CrossRefGoogle ScholarPubMed
Davis, M. A. 1981 The effect of pollinators, predators, and energy constraints on the floral ecology and evolution of Oecologia 48 400CrossRefGoogle ScholarPubMed
Dimou, M.Taraza, S.Thrasyvoulou, A.Vasilakakis, M. 2008 Effect of bumble bee pollination on greenhouse strawberry productionJournal of Apicultural Research 47 99CrossRefGoogle Scholar
Ferrari, A. E.Wall, L. G. 2008 Coinoculation of black locust with rhizobium and on a desurfaced soilSoil Science 173 195CrossRefGoogle Scholar
Fontana, A.Reichelt, M.Hempel, S.Gershenzon, J.Unsicker, S. B. 2009 The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of LJournal of Chemical Ecology 35 833CrossRefGoogle Scholar
Galen, C.Cuba, J. 2001 Down the tube: pollinators, predators, and the evolution of flower shape in the alpine skypilot, Evolution 55 1963CrossRefGoogle Scholar
Gange, A. C.Smith, A. K. 2005 Arbuscular mycorrhizal fungi influence visitation rates of pollinating insectsEcological Entomology 30 600CrossRefGoogle Scholar
Gange, A. C.Brown, V. K.Alpin, D. M. 2003 Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoidsEcology Letters 6 1051CrossRefGoogle Scholar
Gange, A. C.Brown, V. K.Aplin, D. M. 2005 Ecological specificity of arbuscular mycorrhizae: evidence from foliar- and seed-feeding insectsEcology 86 603CrossRefGoogle Scholar
García-Garrido, J. M.Ocampo, J. A. 2002 Regulation of the plant defence response in arbuscular mycorrhizal symbiosisJournal of Experimental Biology 53 1377Google ScholarPubMed
Gill, F. B. 1988 Effects of nectar removal on nectar accumulation in flowers of (Heliconianaceae)Biotropica 20 168CrossRefGoogle Scholar
Gonzalez, M. V.Coque, M.Herrero, M. 1998 Influence of pollination systems on fruit set and fruit quality in kiwifruit ()Annals of Applied Biology 132 349CrossRefGoogle Scholar
Gori, D. F. 1983 Post-pollination phenomena and adaptive floral changesJones, C. E.Little, R. J.Handbook of Experimental Pollination BiologyNew YorkVan Nostrand Reinhold31Google Scholar
Guerrieri, E.Lingua, G.Digilio, M. C.Massa, N.Berta, G. 2004 Do interactions between plant roots and the rhizosphere affect parasitoid behaviorEcological Entomology 29 753CrossRefGoogle Scholar
Gunther, R. W.Lanza, J. 1989 Variation in attractiveness of diaspores to a seed-dispersing antAmerican Midland Naturalist 122 321CrossRefGoogle Scholar
Guo, B. Z.Hendrix, J. W.An, Z.-Q.Ferriss, R. S. 1992 Role of endophyte of fescue on inhibition of colonization and reproduction of mycorrhizal fungiMycologia 84 882CrossRefGoogle Scholar
Heil, M. 2008 Indirect defence via tritrophic interactionsNew Phytologist 178 41CrossRefGoogle ScholarPubMed
Heil, M.Kost, C. 2006 Priming of indirect defensesEcology Letters 9 813CrossRefGoogle Scholar
Heil, M.Koch, T.Hilpert, A.Fiala, B.Boland, W.Linsenmair, K. E. 2001 Extrafloral nectar production of the ant-associated plant, , is an induced, indirect, defensive response elicited by jasmonic acidProceedings of the National Academy of Sciences of the United States of America 98 1083CrossRefGoogle ScholarPubMed
Heinemeyer, A.Ridgway, K. P.Edwards, E. J.Benham, D. G.Young, J. P. W.Fitter, A. H. 2004 Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland communityGlobal Change Biology 10 52CrossRefGoogle Scholar
Hoeksema, J. D.Bruna, E. M. 2000 Pursuing the big questions about interspecific mutualism: a review of theoretical approachesOecologia 125 321CrossRefGoogle ScholarPubMed
Holland, J. N.Ness, J. H.Boyle, A. L.Bronstein, J. L. 2005 Mutualisms as consumer–resource interactionsBarbosa, P.Castellanos, I.Ecology of Predator–Prey InteractionsNew YorkOxford University Press17Google Scholar
Irwin, R. E. 2000 Morphological variation and female reproductive success in two sympatric species: evidence for phenotypic selection in and (Liliaceae)American Journal of Botany 87 205CrossRefGoogle Scholar
Irwin, R. E. 2001 Field and allozyme studies investigating optimal mating success in two sympatric spring-ephemeral plantsTrillium erectum and T. grandiflorum. Heredity 87 178CrossRefGoogle ScholarPubMed
Irwin, R. E. 2006 Consequences of direct versus indirect species interactions to selection on traits: pollination and nectar robbing in American Naturalist 167 315Google Scholar
Jallow, M. F. A.Dugassa-Gobena, D.Vidal, S. 2008 Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changesArthropod–Plant Interactions 2 53CrossRefGoogle Scholar
Janzen, D. H. 1985 The natural history of mutualismsBoucher, D. H.The Biology of MutualismNew YorkOxford University PressGoogle Scholar
Jordano, P. 1987 Avian fruit removal: effects of fruit variation, crop size, and insect damageEcology 68 1711CrossRefGoogle ScholarPubMed
Kalisz, S.Hanzawa, F. M.Tonsor, S. J.Thiede, D. A.Voigt, S. 1999 Ant-mediated seed dispersal alters pattern of relatedness in a population of Ecology 80 2620CrossRefGoogle Scholar
Karban, R.Baldwin, I. T. 1997 Induced Responses to HerbivoryChicago, ILUniversity of Chicago PressCrossRefGoogle Scholar
Koide, R. T. 2000 Mycorrhizal symbiosis and plant reproductionKapulnik, Y.Douds, D. D.Arbuscular Mycorrhizas: Physiology and FunctionDodrecht, The NetherlandsKluwer Academic19CrossRefGoogle Scholar
Kost, C.Heil, M. 2006 Herbivore-induced plant volatiles induce an indirect defense in neighbouring plantsJournal of Ecology 94 619CrossRefGoogle Scholar
Kost, C.Heil, M. 2008 The defensive role of volatile emission and extrafloral nectar secretion for lima bean in natureJournal of Chemical Ecology 34 2CrossRefGoogle ScholarPubMed
Laird, R. A.Addicott, J. F. 2007 Arbuscular mycorrhizal fungi reduce the construction of extrafloral nectaries in Oecologia 152 541CrossRefGoogle Scholar
Larimer, A. L.Bever, J. D.Clay, K. 2010 The interactive effects of plant microbial symbionts: a review and meta-analysisSymbiosis 51 139CrossRefGoogle Scholar
Lau, T. C.Lu, X.Koide, R. T.Stephenson, A. G. 1995 Effects of soil fertility and mycorrhizal infection on pollen production and pollen grain-size of (Cucurbitaceae)Plant Cell and Environment 18 169CrossRefGoogle Scholar
Leitner, M.Roland, K.Hause, B.Boland, W.Mithöfer, A. 2010 Does mycorrhization influence herbivore-induced volatile emission in Mycorrhiza 20 89CrossRefGoogle Scholar
Mack, K. M. L.Rudgers, J. A. 2008 Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytesOikos 117 310CrossRefGoogle Scholar
McCann, K. S. 2000 The diversity-stability debateNature 405 228CrossRefGoogle ScholarPubMed
Morris, W. F.Hufbauer, R. A.Agrawal, A. A. 2007 Direct and indirect interactive effects of enemies and mutualists on plant performance: a meta-analysisEcology 88 1021CrossRefGoogle ScholarPubMed
Mothershead, K.Marquis, R. J. 2000 Fitness impacts of herbivory through indirect effects on plant-pollinator interactions in Ecology 81 30Google Scholar
Ness, J. H. 2003 alters extrafloral nectar production after herbivory and attracts ant bodyguardsOecologia 134 210CrossRefGoogle ScholarPubMed
Ness, J. H. 2006 A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinatorsOikos 113 506CrossRefGoogle Scholar
Ness, J. H.Morris, W. F.Bronstein, J. L. 2006 Integrating quality and quantity of mutualistic service to contrast ant species protecting Ecology 87 912CrossRefGoogle Scholar
Novas, M. V.Cabral, D.Godeas, A. M. 2005 Interaction between grass endophytes and mycorrhizas in from Patagonia, ArgentinaSymbiosis 40 23Google Scholar
Pacovsky, R. S.Fuller, G.Stafford, A. E.Paul, E. A. 1986 Nutrient and growth interactions in soybean colonized with and Plant and Soil 92 37CrossRefGoogle Scholar
Palmer, T. M.Doak, D. F.Stanton, M. L. 2010 Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualismProceedings of the National Academy of Sciences of the United States of America 107 17234CrossRefGoogle Scholar
Palmer, T. M.Stanton, M. L.Young, T. P. 2003 Competition and coexistence: exploring mechanisms that restrict and maintain diversity within mutualist guildsAmerican Naturalist 162 S63CrossRefGoogle ScholarPubMed
Peacor, S. D.Werner, E. E. 2001 Contribution of trait-mediated indirect effects to the net effects of a predatorProceedings of the National Academy of Sciences of the United States of America 98 3904CrossRefGoogle ScholarPubMed
Poulton, J. L.Bryla, D. R.Koide, R. T.Stephenson, A. G. 2002 Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomatoNew Phytologist 154 255CrossRefGoogle Scholar
Rahman, M. H.Saiga, S. 2005 Endophytic fungi () affect the growth and mineral uptake, transport and efficiency ratios of tall fescue ()Plant and Soil 272 163CrossRefGoogle Scholar
Rapparini, F.Llusià, J.Penuelas, J. 2008 Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of LPlant Biology 10 108CrossRefGoogle Scholar
Rasmann, S.Köllner, T. G.Degenhardt, J. 2005 Recruitment of endomopathogenic nematodes by insect-damaged maize rootsNature 434 732CrossRefGoogle ScholarPubMed
Rudgers, J. A. 2004 Enemies of herbivores can shape plant traits: selection in a facultative ant-plant mutualismEcology 85 192CrossRefGoogle Scholar
Russo, S. E. 2003 Responses of dispersal agents to tree and fruit traits in (Myristicaceae): implications for selectionOecologia 136 80CrossRefGoogle ScholarPubMed
Sage, T. L.Griffin, S. R.Pontieri, V. 2001 Stigmatic self-incompatibility and mating patterns in and (Melanthiaceae)Annals of Botany 88 829CrossRefGoogle Scholar
Sallabanks, R. 1993 Hierarchical mechanisms of fruit selection by an avian frugivoreEcology 74 1326CrossRefGoogle Scholar
Schemske, D. W.Horvitz, C. C. 1988 Plant-animal interactions and fruit production in a neotropical herb: a path analysisEcology 69 1128CrossRefGoogle Scholar
Smith, S. E.Read, D. J. 1997 Mycorrhizal SymbiosisSan Diego, CAAcademic PressGoogle Scholar
Stachowicz, J. J.Whitlatch, R. B. 2005 Multiple mutualists provide complementary benefits to their seaweed hostEcology 86 2418CrossRefGoogle Scholar
Stanton, M. L. 2003 Interacting guilds: moving beyond the pairwise perspective on mutualismsAmerican Naturalist 162 S10CrossRefGoogle ScholarPubMed
Stout, J. C.Goulson, D. 2001 The use of conspecific and interspecific scent marks by foraging bumblebees and honeybeesAnimal Behavior 62 183CrossRefGoogle Scholar
Strauss, S. Y. 1997 Floral characters link herbivores, pollinators, and plant fitnessEcology 78 1640CrossRefGoogle Scholar
Strauss, S. Y.Irwin, R. E. 2004 Ecological and evolutionary consequences of multispecies plant-animal interactionsAnnual Review of Ecology, Evolution, and Systematics 35 435CrossRefGoogle Scholar
Strauss, S. Y.Conner, J. K.Lehtilä, K. P. 2001 Effects of foliar herbivory by insects on the fitness of : damage can increase male fitnessAmerican Naturalist 158 496CrossRefGoogle ScholarPubMed
Strauss, S. Y.Sahli, H.Conner, J. K. 2005 Toward a more trait-centered approach to diffuse (co)evolutionNew Phytologist 165 81CrossRefGoogle Scholar
Vander Wall, S. B.Longland, W. S. 2004 Diplochory: are two seed dispersers better than one?Trends in Ecology and Evolution 19 155CrossRefGoogle ScholarPubMed
Varga, S.Kytöviita, M.-M. 2010 Gender dimorphism and mycorrhizal symbiosis affect floral visitors and reproductive output in Functional Ecology 24 750CrossRefGoogle Scholar
Waites, A. R.Ågren, J. 2004 Pollinator visitation, stigmatic pollen loads and among-population variation in seed set in Journal of Ecology 92 512CrossRefGoogle Scholar
Weber, J.Ducousso, M.Tham, F. Y. 2005 Co-inoculation of with and sp. in aeroponic cultureBiology and Fertility of Soils 41 233CrossRefGoogle Scholar
Wolfe, B. E.Husband, B. C.Klironomos, J. N. 2005 Effects of belowground mutualism on an aboveground mutualismEcology Letters 8 218CrossRefGoogle Scholar
Wootton, J. T. 1993 Indirect effects and habitat use in an intertidal community: interaction chains and interaction modificationsAmerican Naturalist 141 71CrossRefGoogle Scholar
Yamanaka, T.Akama, A.Li, C.-Y.Okabe, H. 2005 Growth, nitrogen fixation and mineral acquisition of after inoculation of together with and Journal of Forest Research 10 21CrossRefGoogle Scholar
Zitzer, S. F.Archer, S. R.Boutton, T. W. 1996 Spatial variability in the potential for symbiotic N2 fixation by woody plants in a subtropical savanna ecosystemJournal of Applied Ecology 33 1125CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×