Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-01T22:12:53.279Z Has data issue: false hasContentIssue false

5 - Bottom-up and top-down forces shaping wooded ecosystems: lessons from a cross-biome comparison

from Part II - Ecosystems

Published online by Cambridge University Press:  05 May 2015

Dries P. J. Kuijper
Affiliation:
Polish Academy of Sciences
Mariska Te Beest
Affiliation:
Umeå University
Marcin Churski
Affiliation:
Polish Academy of Sciences
Joris P. G. M. Cromsigt
Affiliation:
Swedish University of Agricultural Sciences
Torrance C. Hanley
Affiliation:
Northeastern University, Boston
Kimberly J. La Pierre
Affiliation:
University of California, Berkeley
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Trophic Ecology
Bottom-up and Top-down Interactions across Aquatic and Terrestrial Systems
, pp. 107 - 133
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asner, G. P., Levick, S. R., Kennedy-Bowdoin, T., et al. (2009). Large-scale impacts of herbivores on the structural diversity of African savannas. Proceedings of the National Academy of Sciences of the USA, 106, 4947–4952.CrossRefGoogle ScholarPubMed
Baldeck, C. A, Colgan, M. S., Féret, J.-B., et al. (2014). Landscape-scale variation in plant community composition of an African savanna from airborne species mapping. Ecological Applications, 24, 84–93.CrossRefGoogle ScholarPubMed
Beard, K. H., Vogt, K. A. and Kulmatiski, A. (2002). Top-down effects of a terrestrial frog on forest nutrient dynamics. Oecologia, 133, 583–593.CrossRefGoogle ScholarPubMed
Bengtsson, J., Nilsson, S. G., Franc, A. and Menozzi, P. (2000). Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecology and Management, 132, 39–50.CrossRefGoogle Scholar
Birks, H. J. B. (2005). Mind the gap: how open were European primeval forests? Trends in Ecology and Evolution, 20,154–156.CrossRefGoogle ScholarPubMed
Bobiec, A. (2007). The influence of gaps on tree regeneration: a case study of the mixed lime-hornbeam (Tilio-Carpinetum Tracz. 1962) communities in the Białowieża Primeval Forest. Polish Journal of Ecology, 55, 441–455.Google Scholar
Bobiec, A., van der Burgt, H., Meijer, K., et al. (2000). Rich deciduous forests in Białowieża as a dynamic mosaic of developmental phases: premises for nature conservation and restoration management. Forest Ecology and Management, 130, 159–175.CrossRefGoogle Scholar
Bonan, G. A. B. and Shugart, H. H. (1989). Environmental factors and ecological processes in boreal forests. Annual Review of Ecology and Systematics, 20, 1–28.CrossRefGoogle Scholar
Bond, W. J. (2005). Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. Journal of Vegetation Science, 16, 261–266.Google Scholar
Bond, W. J. (2008). What limits trees in C-4 grasslands and savannas?Annual Review of Ecology, Evolution, and Systematics, 39, 641–659.CrossRefGoogle Scholar
Bond, W. J. and Keeley, J. E. (2005). Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution, 20, 387–394.CrossRefGoogle ScholarPubMed
Bond, W. J. and Loffell, D. (2001). Introduction of giraffe changes acacia distribution in a South African savanna. African Journal of Ecology, 39, 286–294.CrossRefGoogle Scholar
Bond, W. J. and Midgley, G. F. (2000). A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Global Change Biology, 6, 865–869.CrossRefGoogle Scholar
Bond, W. J. and van Wilgen, B. W. (1996). Fire and Plants. London: Chapman and Hall.CrossRefGoogle Scholar
Brandner, T. A., Peterson, R. O. and Risenhoover, K. L. (1990). Balsam fir on Isle Royale: effects of moose herbivory and population density. Ecology, 71, 155–164.CrossRefGoogle Scholar
Bryant, J. P. and Chapin, F. S. III. (1986). Browsing-woody plant interactions during boreal forest plant succession. In Forest Ecosystems in the Alaskan Taiga: A Synthesis of Structure and Function – Ecological Studies, Volume 57, ed. K. Van Cleve, F. S.Chapin, P. W.Flanagan, L. A. Viereck and Dyrness, C. T.. Berlin: Springer-Verlag, pp. 213–225.Google Scholar
Bryant, J. P., Provenza, F. D., Pastor, J., et al. (1991). Interactions between woody plants and browsing mammals mediated by secondary metabolites. Annual Review of Ecology and Systematics, 22, 431–446.CrossRefGoogle Scholar
Bryant, J. P., Reichardt, P. B. and Clausen, T. P. (1992). Chemically mediated interactions between woody plants and browsing mammals. Journal of Range Management, 45, 18–24.CrossRefGoogle Scholar
Buitenwerf, R., Bond, W. J., Stevens, N. and Trollope, W. S. W. (2012). Increased tree densities in South African savannas: > 50 years of data suggests CO2 as a driver. Global Change Biology, 18, 675–684.CrossRefGoogle Scholar
Busing, R. T. and Brokaw, N. (2002). Tree species diversity in temperate and tropical forest gaps: the role of lottery recruitment. Folia Geobotanica, 37, 33–43.CrossRefGoogle Scholar
Carson, W. P., Anderson, J. T., Leigh, E. G. Jr. and Schnitzer, S. A. (2008). Challenges associated with testing and falsyfying the Janzen-Connell hypothesis: a review and critique. In Tropical Forest Ecology, ed. Carson, W. P. and Schnitzer, S. A.. Oxford: Wiley-Blackwell, pp. 210–241.Google Scholar
Coley, P. D., Bryant, J. P. and Chapin, F. S. III. (1985). Resource availability and plant antiherbivore defense. Science, 230, 895–899.CrossRefGoogle ScholarPubMed
Connell, J. H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Dynamics of populations, ed. den Boer, P. J. and Gradwell, G. R.. Wageningen: Centre for Agricultural Publications and Documentation, pp. 298–310.Google Scholar
Côté, S. D., Rooney, T. P., Trembley, J.-P., Dussault, C. and Waller, D. M. (2004). Ecological impacts of deer overabundance. Annual Review of Ecology, Evolution, and Systematics, 35, 113–147.CrossRefGoogle Scholar
Creel, S., Winnie Jr., J. A., Christianson, D. and Liley, S. (2008). Time and space in general models of antipredator response: test with wolves and elk. Animal Behaviour, 76, 1139–1146.CrossRefGoogle Scholar
Cromsigt, J. P. G. M. and Kuijper, D. P. J. (2011). Revisiting the browsing lawn concept: evolutionary interactions or pruning herbivores? Perspectives in Plant Ecology, Evolution and Systematics, 13, 207–215.CrossRefGoogle Scholar
Cromsigt, J. P. G. M. and Olff, H. (2008) Dynamics of grazing lawn formation: an experimental test of the role of scale-dependent processes. Oikos, 117, 1444–1452.CrossRefGoogle Scholar
Cromsigt, J. P. G. M. and Te Beest, M. (2014). Restoration of a megaherbivore – landscape-level impacts of white rhinoceros in Kruger National Park.Journal of Ecology. DOI: 10.1111/1365–2745.12218.CrossRefGoogle Scholar
Cromsigt, J. P. G. M., Kuijper, D. P. J., Adam, M., et al. (2013). Hunting for fear: innovating management of human–wildlife conflicts. Journal of Applied Ecology, 50, 544–549.CrossRefGoogle Scholar
Danell, K., Bergström, R., Edenius, L. and Ericsson, G. (2003). Ungulates as drivers of tree population dynamics at module and genet levels. Forest Ecology and Management, 181, 67–76.CrossRefGoogle Scholar
DeAngelis, D. L. (1992). Dynamics of Nutrient Cycling and Food Webs. London: Chapman and Hall.CrossRefGoogle Scholar
Dirzo, R. and Miranda, A. (1991). Altered patterns of herbivory and diversity in the forest understory: a case study of the possible consequences of contemporary defaunation. In Plant–Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions, ed. Price, P. W., Lewinsohn, P. W., Fernandes, G. W. and Benson, W. W.. New York: Wiley, pp. 273–287.Google Scholar
Du Toit, J. T. and Olff, H. (2014). Generalities in grazing and browsing ecology: using across-guild comparisons to control contingencies.Oecologia. DOI: 10.1007/s00442–013–2864–8.CrossRefGoogle ScholarPubMed
Dunham, A. E. (2008). Above and below ground impacts of terrestrial mammals and birds in a tropical forest. Oikos, 117, 571–579.CrossRefGoogle Scholar
Dyer, L. A. and Letourneau, D. K. (1999). Relative strengths of top-down and bottom-up forces in a tropical forest community. Oecologia, 119, 265–274.CrossRefGoogle Scholar
Dyer, L. A., Letourneau, D. K., Chavarria, G. V. and Amorett, D. S. (2010). Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities. Ecology, 91, 3707–3718.CrossRefGoogle ScholarPubMed
Ellis, E. C. (2011). Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of the Royal Society A, 369, 1010–1035.CrossRefGoogle ScholarPubMed
Ellis, E. C. and Ramankutty, N. (2008). Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and Environments, 6, 439–447.Google Scholar
Fortin, D., Beyer, H. L., Boyce, M. S., et al. (2005). Wolves influence elk movements: Behavior shapes a trophic cascade in Yellowstone National Park. Ecology, 86, 1320–1330.CrossRefGoogle Scholar
Fretwell, S. D. (1977). The regulation of plant communities by the food chains exploiting them. Perspectives in Biology and Medicine, 20, 169–185.CrossRefGoogle Scholar
Green, P. T., O'Dowd, D. J. and Lake, P. S. (2008). Recruitment dynamics in a rainforest seedling community: context-independent impact of a keystone consumer. Oecologia, 156, 373–385.CrossRefGoogle Scholar
Gripenberg, S. and Roslin, T. (2007). Up or down in space? Uniting the bottom-up versus top-down paradigm and spatial ecology. Oikos, 116, 181–188.CrossRefGoogle Scholar
Guldemond, R. and Van Aarde, R. (2008). A meta-analysis of the impact of African elephants on savanna vegetation. Journal of Wildlife Management, 72, 892–899.Google Scholar
Hall, S. J. G. (2008). A comparative analysis of the habitat of the extinct aurochs and other prehistoric mammals in Britain. Ecography, 31, 187–190.CrossRefGoogle Scholar
Halofsky, J. S. and Ripple, W. J. (2008). Fine-scale predation risk on elk after wolf reintroduction in Yellowstone National Park, USA. Oecologia, 155, 869–877.CrossRefGoogle ScholarPubMed
Hannah, L., Carr, J. L. and Landerani, A. (1995). Human disturbance and natural habitat – a biome level analysis of a global data set. Biodiversity and Conservation, 4, 128–155.CrossRefGoogle Scholar
Higgins, S. I., Bond, W. J., February, E. C., et al. (2007). Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology, 88, 1119–1125.CrossRefGoogle ScholarPubMed
Hirota, M., Holmgren, M., Van Nes, E. H. and Scheffer, M. (2011). Global resilience of tropical forest and savanna to critical transitions. Science, 334, 232–235.CrossRefGoogle Scholar
Hirsch, B. T., Kays, R., Pereira, V. E. and Jansen, P. A. (2012). Directed seed dispersal toward areas with low conspecific tree density by a scatter-hoarding rodent. Ecology Letters, 15, 1423–1429.CrossRefGoogle Scholar
Holdo, R. M., Sinclair, A. R. E., Dobson, A. P., et al. (2009). A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biology, 7, e1000210.CrossRefGoogle ScholarPubMed
Hopcraft, J. G. C., Olff, H. and Sinclair, A. R. E. (2010). Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends in Ecology and Evolution, 25 (2), 119–128.CrossRefGoogle ScholarPubMed
Hubbell, S. P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166–172.CrossRefGoogle Scholar
Hubbell, S. P. (2006). Neutral theory and the evolution of ecological equivalence. Ecology, 87, 1387–1398.CrossRefGoogle Scholar
Hyatt, L. A., Rosenberg, M. S., Howard, T. G., et al. (2003). The distance dependence predictions of the Janzen-Conell hypothesis: a meta-analyis. Oikos, 103, 590–602.CrossRefGoogle Scholar
Jansen, P. A., Hirsch, B. T., Emsens, W. J., et al. (2012). Thieving rodents as substitute dispersers of megafaunal seeds. Proceedings of the National Academy of Sciences of the USA, 109, 12610–12615.CrossRefGoogle ScholarPubMed
Janzen, D. H. (1970). Herbivores and number of tree species in tropical forests. American Naturalist, 104, 501–528.CrossRefGoogle Scholar
Jędrzejewska, B. and Jędrzejewski, W. (2005). Large carnivores and ungulates in European temperate forest ecosystems: bottom-up and top-down control. In Large Carnivores and the Conservation of Biodiversity, ed. Ray, J. C., Redford, K. H., Steneck, R. S. and Berger, J.. Washington: Island Press, pp. 230–245.Google Scholar
Jędrzejewska, B., Jędrzejewski, W., Bunevich, A., , N., Miłkowski, L. and Krasiński, Z. A. (1997). Factors shaping population densities and increased rates of ungulates in Białowieża Primeval Forest (Poland and Belarus) in the 19th and 20th century. Acta Theriologica, 42, 399–451.CrossRefGoogle Scholar
Jędrzejewski, W., Schmidt, K., Theuerkauf, J., et al. (2002). Kill rates and predation by wolves on ungulate populations in Białowieża primeval forest (Poland). Ecology, 83, 1341–1356.Google Scholar
Kalka, M. B., Smith, A. R. and Kalko, E. K. V. (2008). Bats limit arthropods and herbivory in a tropical forest. Science, 320, 71–71.CrossRefGoogle Scholar
Kerley, G. I. H., Landman, M., Kruger, L., et al. (2008). Effects of elephants on ecosystems and biodiversity. In Assessment of South African Elephant Management, ed. Scholes, R. J. and Mennell, K. G.. Johannesburg: Witwatersrand University Press, pp. 146–205.Google Scholar
Kerley, G. I. H., Kowalczyk, R. and Cromsigt, J. P. G. M. (2012). Conservation implications of the refugee species concept and the European bison: king of the forest or refugee in a marginal habitat? Ecography, 35, 519–529.CrossRefGoogle Scholar
Kielland, K. and Bryant, J. P. (1998). Moose herbivory in taiga: effects on biogeochemistry and vegetation dynamics in primary succession. Oikos, 82, 377–383.CrossRefGoogle Scholar
Kuijper, D. P. J. (2011). Lack of natural control mechanisms increases wildlife-forestry conflict in managed temperate European forest systems. European Journal of Forest Research, 130, 895–909CrossRefGoogle Scholar
Kuijper, D. P. J., Cromsigt, J. P. M. G., Churski, M., et al. (2009). Do ungulates preferentially feed in forest gaps in European temperate forests? Forest Ecology and Management, 258, 1528–1535.CrossRefGoogle Scholar
Kuijper, D. P. J., Cromsigt, J. P. G. M., Jędrzejewska, B., et al. (2010a). Bottom-up versus top-down control of tree regeneration in the Białowieża Primeval Forest, Poland. Journal of Ecology, 98, 888–899.CrossRefGoogle Scholar
Kuijper, D. P. J., Jędrzejewska, B., Brzeziecki, B., et al. (2010b). Fluctuating ungulate density shapes tree recruitment in natural stands of the Białowieża Primeval forest, Poland. Journal of Vegetation Science, 21, 1082–1098.CrossRefGoogle Scholar
Kuijper, D. P. J., de Kleine, C., Churski, M., et al. (2013). Landscape of fear in Europe: wolves affect spatial patterns of ungulate browsing in Białowieża Primeval Forest, Poland. Ecography 36, 1263–1275. DOI: 10.1111/j.1600–0587.2013.00266.x.CrossRefGoogle Scholar
Kuijper, D. P. J., Verwijmeren, M., Churski, M., et al. (2014). What cues do ungulates use to assess predation risk in dense temperate forests?PLoS One 9(1): e84607. DOI: 10.1371/journal.pone.0084607.CrossRefGoogle ScholarPubMed
Kuuluvainen, T. (1992). Tree architecture adapted to efficient light utilization: is there a basis for latitudinal gradients?Oikos, 65, 275–284.CrossRefGoogle Scholar
Laliberte, A. S. and Ripple, W. J. (2004). Range contractions of North American carnivores and ungulates. BioScience, 54, 123–138.CrossRefGoogle Scholar
Lieth, H. and Whittaker, R. H. (eds.) (1975). Primary Productivity of the Biosphere: Ecological Studies Vol. 14. New York: Springer Verlag.CrossRefGoogle Scholar
Makarieva, A. M. and Gorshkov, V. G. (2010). The biotic pump: condensation, atmospheric dynamics and climate. International Journal of Water, 5, 365–385.CrossRefGoogle Scholar
Malmström, C. M. and Raffa, K. F. (2000). Biotic disturbance agents in the boreal forest: considerations for vegetation change models. Global Change Biology, 6, 35–48.CrossRefGoogle Scholar
Mao, J. S., Boyce, M. S., Smith, D. W., et al. (2005). Habitat selection by elk before and after wolf reintroduction in Yellowstone National Park. Journal of Wildlife Management, 69, 1691–1707.CrossRefGoogle Scholar
McCullough, D. G., Werner, R. A. and Neumann, D. (1998). Fire and insects in northern and boreal forest ecosystems of North America. Annual Review of Entomology, 43, 107–127.CrossRefGoogle ScholarPubMed
McInnes, P., Naiman, R. J., Pastor, J. and Cohen, Y. (1992). Effects of moose browsing on vegetation and litter of the boreal forest, Isle Royale, Michigan, USA. Ecology, 73, 2059–2075.CrossRefGoogle Scholar
McLaren, B. E. and Peterson, R. O. (1994). Wolves, moose, and tree rings on Isle Royale. Science, 266, 1555–1558.CrossRefGoogle ScholarPubMed
Michalczuk, C. (2001). Forest habitats and tree stands of the Białowieża National Park. In Phytocoenosis 13, Supplementum Cartographiae Geobotanicae 13, Warszawa – Białowieża: Białowieża Geobotanical Station of Warsaw University.Google Scholar
Mitchell, F. J. G. (2005). How open were European primeval forests? Hypothesis testing using palaeoecological data. Journal of Ecology, 93, 168–177.CrossRefGoogle Scholar
Modry, M., Hubeny, D. and Rejsek, K. (2004). Differential response of naturally regenerated European shade tolerant tree species to soil type and light availability. Forest Ecology and Management, 188, 185–195.CrossRefGoogle Scholar
Nams, V. O., Folkard, N. F. G. and Smith, J. N. M. (1993). Effects of nitrogen fertilization on several woody and non woody boreal forest species. Canadian Journal of Botany, 71, 93–97.CrossRefGoogle Scholar
Nores, C., Llaneza, L. and Alvarez, M. A. (2008). Wild boar Sus scrofa mortality by hunting and wolf Canis lupus predation: an example in northern Spain. Wildlife Biology, 14, 44–51.CrossRefGoogle Scholar
Oksanen, L. and Oksanen, T. (2000). The logic and realism of the hypothesis of exploitation ecosystems. The American Naturalist, 155, 703–723.CrossRefGoogle ScholarPubMed
Oksanen, L., Fretwell, S. D., Arruda, J. and Niemelä, P. (1981). Exploitation ecosystems in gradients of primary productivity. The American Naturalist, 118, 240–261.CrossRefGoogle Scholar
Olff, H., Vera, F. W. M., Bokdam, J., et al. (1999). Shifting mosaics in grazed woodlands driven by the alternation of plant facilitation and competition. Plant Biology, 1, 127–137.CrossRefGoogle Scholar
Owen-Smith, R. N. (1988). Megaherbivores: the Influence of Very Large Body Size on Ecology. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Pastor, J. and Naiman, R. J. (1992). Selective foraging and ecosystem processes in boreal forests. American Naturalist, 139, 690–705.CrossRefGoogle Scholar
Pastor, J., Naiman, R. J., Dewey, B. and McInnes, P. (1988). Moose, microbes and the boreal forest. BioScience, 38, 770–777.CrossRefGoogle Scholar
Pastor, J., Dewey, B., Naiman, R. J., McInnes, P. and Cohen, Y. (1993). Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology, 74, 467–480.CrossRefGoogle Scholar
Peterson, R. O., Page, R. E. and Dodge, K. M. (1984).Wolves, moose, and the allometry of population cycles. Science, 224, 1350–1352.CrossRefGoogle ScholarPubMed
Polis, G. A. and Strong, D. R. (1996). Food web complexity and community dynamics. The American Naturalist, 147, 813–846.CrossRefGoogle Scholar
Prentice, I. C., Cramer, W., Harrison, W. P., et al. (1992). A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 19, 117–134.CrossRefGoogle Scholar
Pringle, R. M., Young, T. P., Rubenstein, D. I. and McCauley, D. J. (2007). Herbivore-initiated interaction cascades and their modulation by productivity in an African savanna. Proceedings of the National Academy of Sciences of the USA, 104, 193–197.CrossRefGoogle Scholar
Prins, H. T. and Van der Jeugd, H. P. (1993). Herbivore population crashes and woodland structure in East Africa. Journal of Ecology, 81, 305–314.CrossRefGoogle Scholar
Roques, K. G., O'Connor, T. G. and Watkinson, A. R. (2001). Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. Journal of Applied Ecology, 38, 268–280.CrossRefGoogle Scholar
Runkle, J. R. (1981). Gap regeneration in some old-growth forests of the eastern United States. Ecology, 62, 1041–1051.CrossRefGoogle Scholar
Samojlik, T. and Kuijper, D. P. J. (2013). Grazed wood pasture versus browsed high forests: impact of ungulates on forest landscapes from the perspective of the Białowieża Primeval Forest. In Trees, Forested Landscapes and Grazing Animals: A European Perspective on Woodlands and Grazed Treescapes, ed. Rotherham, I. D.. London/New York: Routledge, pp. 143–162.Google Scholar
Samojlik, T., Jędrzejewska, B., Krasnodębski, D., Dulinicz, M. and Olczak, H. (2007). Man in the ancient forest. Academia, The Magazine of the Polish Academy of Sciences, 4(12), 36–37.Google Scholar
Sankaran, M., Hanan, N. P, Scholes, R. J., et al. (2005). Determinants of woody cover in African savannas. Nature, 438, 846–849.CrossRefGoogle ScholarPubMed
Sankaran, M, Augustine, D. J. and Ratnam, J. (2013). Native ungulates of diverse body sizes collectively regulate long-term woody plant demography and structure of a semi-arid savanna. Journal of Ecology, 101, 1389–1399.CrossRefGoogle Scholar
Scheffer, M., Hirotaa, M., Holmgren, M., Van Nes, E. H. and Chapin III, F. S. (2012). Thresholds for boreal biome transitions. Proceedings of the National Academy of Sciences of the USA, 109, 21384–21389.CrossRefGoogle ScholarPubMed
Scholes, R. J. (1999). Savannas. In The Vegetation of Southern Africa, eds. Cowling, R., Richardson, D. and Pierce, S.. Cambridge, UK: Cambridge University Press, pp. 258–277.Google Scholar
Scholes, R. J. and Archer, S. R. (1997). Tree-grass interactions in sanannas. Annual Review of Ecology, Evolution, and Systematics, 28, 517–544.Google Scholar
Sheil, D. and Murdiyarso, D. (2009). How forests attract rain: an examination of a new hypothesis. BioScience, 59, 341–347.CrossRefGoogle Scholar
Silman, M. R., Terborgh, J. W. and Kiltie, R. A. (2003). Population regulation of a dominant rain forest tree by a major seed predator. Ecology, 84, 431–438.CrossRefGoogle Scholar
Sinclair, A. R. E., Metzger, K., Brashares, J. S., et al. (2010). Trophic cascades in African savanna: Serengeti as a case study. In Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature, ed. Estes, J. A. and Terborgh, J.. Washington: Island Press, pp. 255–274.Google Scholar
Skowno, A. L., Midgley, J. J., Bond, W. J. and Balfour, D. (1999). Secondary succession in Acacia nilotica (L.) savanna in the Hluhluwe Game Reserve, South Africa. Plant Ecology, 145, 1–9.CrossRefGoogle Scholar
Soulé, M. E., Estes, J. A., Berger, J. and Martinez del Rio, C. (2003). Ecological effectiveness: conservation goals for interactive species. Conservation Biology, 17, 1238–1250.CrossRefGoogle Scholar
Staver, C. A., Bond, W. J., Stock, W. D., van Rensburg, S. J. and Waldram, M. S. (2009). Browsing and fire interact to suppress tree density in an African savanna. Ecological Applications, 19, 1909–1919.CrossRefGoogle Scholar
Staver, C. A., Archibald, S. and Levin, S. A. (2011). The global extent and determinants of savanna and forest as alternative biome states. Science, 334, 230–232.CrossRefGoogle ScholarPubMed
Svenning, J.-C. (2002). A review of natural vegetation openness in north-western Europe. Biological Conservation, 104, 133–148.CrossRefGoogle Scholar
Szwagrzyk, J., Szewczyk, J. and Maciejewski, Z. (2012). Shade-tolerant tree species from temperate forests differ in their competitive abilities: a case study from Roztocze, south-eastern Poland. Forest Ecology and Management, 282, 28–35.CrossRefGoogle Scholar
Terborgh, J. (1985). The vertical component of plant species diversity in temperate and tropical forests. The American Naturalist, 126, 760–776.CrossRefGoogle Scholar
Terborgh, J. (1988). The big things that run the world – a sequel to E. O. Wilson. Conservation Biology, 2, 402–403.CrossRefGoogle Scholar
Terborgh, J., Foster, R. B. and Nunez, P. (1996). Tropical tree communities: a test of the nonequilibrium hypothesis. Ecology, 77, 561–567.Google Scholar
Terborgh, J., Lopez, L., Nuñez, V. P., et al. (2001). Ecological meltdown in predator-free forest fragments. Science, 294, 1923–1926.CrossRefGoogle ScholarPubMed
Terborgh, J., Feeley, K., Silman, M., Nuñez, P. and Balukjian, B. (2006). Vegetation dynamics of predator-free land-bridge islands. Journal of Ecology, 94, 253–263.CrossRefGoogle Scholar
Thaker, M., Vanak, A. T., Owen, C. R., et al. (2011). Minimizing predation risk in a landscape of multiple predators: effects on the spatial distribution of African ungulates. Ecology, 92, 398–407.CrossRefGoogle Scholar
Turkington, R., John, E., Watson, S. and Seccombe-Hett, P. (2002). The effects of fertilization and herbivory on the herbaceous vegetation of the boreal forest in north-western Canada: a 10-year study. Journal of Ecology, 90, 325–337.CrossRefGoogle Scholar
Underwood, R. (1982). Vigilance behaviour in grazing African antelopes. Behaviour, 79, 82–107.CrossRefGoogle Scholar
Valeix, M., Loveridge, A. J., Chamaillé-Jammes, S., et al. (2009). Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use. Ecology, 90, 23–30.CrossRefGoogle ScholarPubMed
Van Bael, S. A. and Brawn, J. D. (2005). The direct and indirect effects of insectivory by birds in two contrasting Neotropical forests. Oecologia, 143, 106–116.CrossRefGoogle ScholarPubMed
Van Cleve, K., Oliver, L., Schlentner, R., Viereck, L. A. and Dyrness, C. T. (1983). Productivity and nutrient cycling in taiga forest ecosystems. Canadian Journal of Forest Research, 13, 747–766.Google Scholar
Van Cleve, K., Chapin, F. S. III, Dyrness, C. T. and Viereck, L. A. (1991). Elemental cycling in taiga forests: state-factor control. BioScience, 41(2), 78–88.CrossRefGoogle Scholar
Van den Berghe, C., Frelechoux, F., Gadallah, F. and Butler, A. (2006). Competitive effects of herbaceous vegetation on tree seedling emergence, growth and survival: does gap size matter? Journal of Vegetation Science, 17, 481–488.Google Scholar
Van der Waal, C., Kool, A., Meijer, S. S., et al. (2011). Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation. Oecologia, 165, 1095–1107.CrossRefGoogle ScholarPubMed
Wakeling, J. L., Staver, A. C. and Bond, W. J. (2011). Simply the best: the transition of savanna saplings to trees. Oikos, 120, 1448–1451.CrossRefGoogle Scholar
Waldram, M., Bond, W. and Stock, W. (2008). Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. Ecosystems, 11, 101–112.CrossRefGoogle Scholar
Whittaker, R. H. (1962). Classification of natural communities. Botanical Review, 28, 1–239.CrossRefGoogle Scholar
Whittaker, R. H. (1975). Communities and Ecosystems, 2nd edn. London: Collier MacMillan.Google Scholar
Wigley, B. J.Bond, W. J. and Hoffman, M. T. (2010). Thicket expansion in a South African savanna under divergent land use: local vs. global drivers?Global Change Biology, 16, 964–976.CrossRefGoogle Scholar
Wilson, E. O. (1987). The little things that run the world (The importance and conservation of invertebrates). Conservation Biology, 1, 344–346.CrossRefGoogle Scholar
Wright, S. J., Gompper, M. E. and Deleon, B. (1994). Are large predators keystone species in Neotropical forests – the evidence from Barro Colorado Island. Oikos, 71, 279–294.CrossRefGoogle Scholar
Woodroffe, R. (2000). Predators and people: using human densities to interpret declines of large carnivores. Animal Conservation, 3, 165–173.CrossRefGoogle Scholar
Young, H. S., McCauley, D. J., Helgen, K. M., et al. (2013). Effects of mammalian herbivore declines on plant communities: observations and experiments in an African savanna. Journal of Ecology, 101, 1030–1041.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×