Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-11T14:14:42.228Z Has data issue: false hasContentIssue false

9 - The Neurobiology of Bipolar II Disorder

from Section 1 - Domain Chapters

Published online by Cambridge University Press:  17 December 2018

Gordon Parker
Affiliation:
University of New South Wales, Sydney
Get access
Type
Chapter
Information
Bipolar II Disorder
Modelling, Measuring and Managing
, pp. 91 - 107
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abé, C., Ekman, C. J., Sellgren, C. et al. (2016). Cortical thickness, volume, and surface area in patients with bipolar disorder types I and II. Journal Psychiatry and Neuroscience, 41, 240–50.Google Scholar
Altshuler, L. L., Curran, J. G., Hauser, P. et al. (1995). T2 hyperintensities in bipolar disorder: magnetic resonance imaging comparison and literature meta-analysis. American Journal of Psychiatry, 152, 1139–44.Google ScholarPubMed
Ambrosi, E., Rossi-Espagnet, M. C., Kotzalidis, G. D. et al. (2013). Structural brain alterations in bipolar disorder II: a combined voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) study. Journal of Affective Disorders, 150, 610–15.Google Scholar
Ambrosi, E., Chiapponi, C., Sani, G. et al (2016). White matter microstructural characteristics in Bipolar I and Bipolar II Disorder: a diffusion tensor imaging study. Journal of Affective Disorders, 189, 176–83.CrossRefGoogle ScholarPubMed
Arts, B., Jabben, N., Krabbendam, L. et al. (2008). Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychological Medicine, 38, 771–85.CrossRefGoogle ScholarPubMed
Atagün, M. İ., Şıkoğlu, E. M., Soykan, Ç. et al. (2017). Perisylvian GABA levels in schizophrenia and bipolar disorder. Neuroscience Letters, 637, 7074.Google Scholar
Bai, Y. M., Su, T. P., Tsai, S. J. et al. (2014). Comparison of inflammatory cytokine levels among type I/type II and manic/hypomanic/euthymic/depressive states of bipolar disorder. Journal of Affective Disorders, 166, 187–92.CrossRefGoogle ScholarPubMed
Berk, M., Conus, P., Kapczinski, F. et al. (2010). From neuroprogression to neuroprotection: implications for clinical care. Medical Journal of Australia, 193, S3640.Google Scholar
Berns, G. S., Martin, M., and Proper, S. M. (2002). Limbic hyperreactivity in bipolar II disorder. American Journal of Psychiatry, 159, 304–6.Google Scholar
Bersani, F. S., Minichino, A., Fattapposta, F. et al. (2015). P300 component in euthymic patients with bipolar disorder type I, bipolar disorder type II and healthy controls: a preliminary event-related potential study. Neuroreport, 26, 206–10.Google Scholar
Beyer, J. L., Young, R., Kuchibhatla, M., Krishnan, K. R. (2009). Hyperintense MRI lesions in bipolar disorder: a meta-analysis and review. International Review of Psychiatry, 21, 394409.CrossRefGoogle ScholarPubMed
Bora, E. (2015). Developmental trajectory of cognitive impairment in bipolar disorder: comparison with schizophrenia. European Neuropsychopharmacology, 25, 158–68.Google Scholar
Bora, E. (2018). Neurocognitive features in clinical subgroups of bipolar disorder: a meta-analysis. Journal of Affective Disorders, 229, 125–34.Google Scholar
Bora, E. and Pantelis, C. (2011). Structural trait markers of bipolar disorder: disruption of white matter integrity and localized gray matter abnormalities in anterior fronto-limbic regions. Biological Psychiatry, 69, 299300.CrossRefGoogle ScholarPubMed
Bora, E., Bartholomeusz, C. and Pantelis, C. (2016b). Meta-analysis of Theory of Mind (ToM) impairment in bipolar disorder. Psychological Medicine, 46, 253–64.Google Scholar
Bora, E., Fornito, A., Yücel, M. et al. (2010). Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biological Psychiatry, 67, 1097–105.Google Scholar
Bora, E., Hıdıroğlu, C., Özerdem, A. et al. (2016a). Executive dysfunction and cognitive subgroups in a large sample of euthymic patients with bipolar disorder. European Neuropsychopharmacology, 26, 1338–47.Google Scholar
Bora, E., Yücel, M., and Pantelis, C. (2009). Cognitive endophenotypes of bipolar disorder: a meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives. Journal of Affective Disorders, 113, 120.CrossRefGoogle ScholarPubMed
Bora, E., Yücel, M., and Pantelis, C. (2010). Cognitive impairment in schizophrenia and affective psychoses: implications for DSM-V criteria and beyond. Schizophrenia Bulletin, 36, 3642.Google Scholar
Bora, E., Yücel, M., Pantelis, C. et al. (2011). Meta-analytic review of neurocognition in bipolar II disorder. Acta Psychiatrica Scandanivica, 123, 165–74.Google ScholarPubMed
Bourne, C., Aydemir, Ö., Balanzá-Martínez, V. et al. (2013) Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: an individual patient data meta-analysis. Acta Psychiatrica Scandinavica, 128, 149–62.CrossRefGoogle ScholarPubMed
Brambilla, P., Bellani, M., Yeh, P. H. et al. (2009). White matter connectivity in bipolar disorder. International Review of Psychiatry, 21, 380–6.CrossRefGoogle ScholarPubMed
Brandt, C. L., Eichele, T., Melle, I. et al. (2014). Working memory networks and activation patterns in schizophrenia and bipolar disorder: comparison with healthy controls. British Journal of Psychiatry, 204, 290–8.Google Scholar
Brooks, J. O. 3rd, Vizueta, N., Penfold, C. et al (2015). Prefrontal hypoactivation during working memory in bipolar II depression. Psychological Medicine, 45, 1731–40.CrossRefGoogle ScholarPubMed
Brooks, J. O. 3rd., Bearden, C. E., Hoblyn, J. C. et al. (2010). Prefrontal and paralimbic metabolic dysregulation related to sustained attention in euthymic older adults with bipolar disorder. Bipolar Disorders, 12, 866–74.Google Scholar
Brown, N. C., Andreazza, A. C. and Young, L. T. (2014). An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Research, 218, 61–8.Google Scholar
Cabranes, J. A., Ancín, I., Santos, J. L. et al. (2013). P50 sensory gating is a trait marker of the bipolar spectrum. European Neuropsychopharmacology, 23, 721–7.Google Scholar
Cannon, D. M., Ichise, M., Fromm, S. J. et al. (2006). Serotonin transporter binding in bipolar disorder assessed using [11C]DASB and positron emission tomography. Biological Psychiatry, 60, 207–17.Google Scholar
Caseras, X., Lawrence, N. S., Murphy, K. et al. (2013). Ventral striatum activity in response to reward: differences between bipolar I and II disorders. American Journal of Psychiatry, 170, 533–41.CrossRefGoogle ScholarPubMed
Caseras, X., Murphy, K., Lawrence, N. S. et al. (2015). Emotion regulation deficits in euthymic bipolar I versus bipolar II disorder: a functional and diffusion-tensor imaging study. Bipolar Disorders, 17, 461–70.Google Scholar
Charney, A. W., Ruderfer, D. M., Stahl, E. A. et al. (2017). Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Transl Psychiatry, 7, e993.CrossRefGoogle ScholarPubMed
Chen, C. H., Suckling, J., Lennox, B. R. et al. (2011). A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disorders, 13, 115.Google Scholar
Cheng, C. H., Chan, P. S., Liu, C. Y. et al. (2016). Auditory sensory gating in patients with bipolar disorders: a meta-analysis. Journal of Affective Disorders, 203, 199–03.Google Scholar
Chitty, K. M., Lagopoulos, J., Lee, R. S. et al. (2013) A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. European Neuropsychopharmacology, 23, 1348–63.Google Scholar
Chou, Y. H., Wang, S. J., Lin, C. L. et al. (2010). Decreased brain serotonin transporter binding in the euthymic state of bipolar I but not bipolar II disorder: a SPECT study. Bipolar Disorders, 12, 312–18.CrossRefGoogle Scholar
Coryell, W., Endicott, J., Reich, T. et al. (1984). A family study of bipolar II disorder. British Journal of Psychiatry, 145, 4954.Google Scholar
Cropley, V., Wood, S. J. and Pantelis, C. (2013). Brain structural, neurochemical and neuroinflammatory markers of psychosis onset and relapse: is there evidence for a psychosis relapse signature? International Clinical Psychopharmacology, doi:10.1097/YIC.0b013e32835ab37c.Google Scholar
Dager, S. R., Friedman, S. D., Parow, A. et al. (2004). Brain metabolic alterations in medication-free patients with bipolar disorder. Archives of General Psychiatry, 61, 450–8.Google Scholar
Dargél, A. A., Godin, O., Kapczinski, F. et al. (2015). C-reactive protein alterations in bipolar disorder: a meta-analysis. Journal of Clinical Psychiatry, 76, 142–50.Google ScholarPubMed
de Sousa, R. T., Zarate, C. A. Jr, Zanetti, M. V. et al. (2014). Oxidative stress in early stage Bipolar Disorder and the association with response to lithium. Journal of Psychiatric Research, 50, 3641.Google Scholar
Dell'Osso, B., Cinnante, C., Di Giorgio, A. et al. (2015). Altered prefrontal cortex activity during working memory task in Bipolar Disorder: a functional Magnetic Resonance Imaging study in euthymic bipolar I and II patients. Journal of Affective Disorders, 184, 116–22.Google Scholar
Dittmann, S., Hennig-Fast, K., Gerber, S. et al. (2008). Cognitive functioning in euthymic bipolar I and bipolar II patients. Bipolar Disorders, 10, 877–87.Google Scholar
Elvsåshagen, T., Westlye, L. T., Bøen, E. et al. (2013). Bipolar II disorder is associated with thinning of prefrontal and temporal cortices involved in affect regulation. Bipolar Disorders, 15, 855–64.Google Scholar
Elvsåshagen, T., Zuzarte, P., Westlye, L. T. et al. (2016). Dentate gyrus-cornu ammonis (CA) 4 volume is decreased and associated with depressive episodes and lipid peroxidation in bipolar II disorder: longitudinal and cross-sectional analyses. Bipolar Disorders, 18, 657–68.CrossRefGoogle ScholarPubMed
Fernandes, B. S., Molendijk, M. L., Köhler, C. A. et al. (2015). Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies. BMC Medicine, 13, 289.Google Scholar
Fernandes, B. S., Steiner, J., Molendijk, M. L. et al. (2016). C-reactive protein concentrations across the mood spectrum in bipolar disorder: a systematic review and meta-analysis. Lancet Psychiatry, 3, 1147–56.Google Scholar
Grangeon, M. C., Seixas, C., Quarantini, L. C. et al. (2010). White matter hyperintensities and their association with suicidality in major affective disorders: a meta-analysis of magnetic resonance imaging studies. CNS Spectrum, 15, 375–81.Google Scholar
Ha, T. H., Ha, K., Kim, J. H. et al. (2009). Regional brain gray matter abnormalities in patients with bipolar II disorder: a comparison study with bipolar I patients and healthy controls. Neuroscience Letters, 456, 44–8.CrossRefGoogle ScholarPubMed
Ha, T. H., Her, J. Y., Kim, J. H. et al. (2011). Similarities and differences of white matter connectivity and water diffusivity in bipolar I and II disorder. Neuroscience Letters, 505, 150–4.CrossRefGoogle ScholarPubMed
Hajek, T., Alda, M., Hajek, E. et al. (2013). Functional neuroanatomy of response inhibition in bipolar disorders-combined voxel based and cognitive performance meta-analysis. Journal of Psychiatric Research, 47, 1955–66.Google Scholar
Hajek, T., Bernier, D., Slaney, C. et al. (2008). A comparison of affected and unaffected relatives of patients with bipolar disorder using proton magnetic resonance spectroscopy. Journal of Psychiatry Neuroscience, 33, 531–40.Google ScholarPubMed
Hallahan, B., Newell, J., Soares, J. C. et al. (2011). Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biological Psychiatry, 69, 326–35.Google Scholar
Hamakawa, H., Kato, T., Murashita, J. et al. (1998). Quantitative proton magnetic resonance spectroscopy of the basal ganglia in patients with affective disorders. European Archives Psychiatry and Clinical Neuroscience, 248, 53–8.Google Scholar
Hamakawa, H., Kato, T., Shioiri, T. et al. (1999). Quantitative proton magnetic resonance spectroscopy of the bilateral frontal lobes in patients with bipolar disorder. Psychological Medicine, 29, 639–44.CrossRefGoogle ScholarPubMed
Hauser, P., Matochik, J., Altshuler, L. L. et al. (2000). MRI-based measurements of temporal lobe and ventricular structures in patients with bipolar I and bipolar II disorders. Journal of Affective Disorders, 60, 2532.CrossRefGoogle ScholarPubMed
Hibar, D. P., Westlye, L. T., Doan, N. T. et al. (2017). Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Molecular Psychiatry, doi:10.1038/mp.2017.73.Google Scholar
Hibar, D. P., Westlye, L. T., van Erp, T. G. et al. (2016). Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 21, 1710–16.Google Scholar
Hsiao, Y. L., Wu, Y. S., Wu, J. Y. et al. (2009). Neuropsychological functions in patients with bipolar I and bipolar II disorder. Bipolar Disorders, 11, 547–54.Google Scholar
Huang, C. C., Chang, Y. H., Lee, S. Y. et al. (2012). The interaction between BDNF and DRD2 in bipolar II disorder but not in bipolar I disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 159B, 501–7.Google Scholar
Huang, J., Perlis, R. H., Lee, P. H. et al. (2010). Cross-disorder genome wide analysis of schizophrenia, bipolar disorder, and depression. American Journal of Psychiatry, 167, 1254–63.Google Scholar
Jahshan, C., Wynn, J. K., Mathis, K. I. et al. (2012). Cross-diagnostic comparison of duration mismatch negativity and P3a in bipolar disorder and schizophrenia. Bipolar Disorders, 14, 239–48.CrossRefGoogle ScholarPubMed
Joe, E. J., Lee, . Y., Jeong, S. H. et al. (2007). Dysbindin gene variants are associated with bipolar I disorder in a Korean population. Neuroscience Letters, 418, 272–5.Google Scholar
Kapczinski, F., Dal-Pizzol, F., Teixeira, A.L. et al. (2011). Peripheral biomarkers and illness activity in bipolar disorder. Journal of Psychiatry Research, 45, 156–61.CrossRefGoogle ScholarPubMed
Kato, T., Takahashi, S., Shioiri, T. et al. (1994). Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31magnetic resonance spectroscopy. Journal of Affective Disorders, 31, 125–33.Google Scholar
Kempton, M. J., Geddes, J. R., Ettinger, U. et al. (2008). Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Archives of General Psychiatry, 65, 1017–32.CrossRefGoogle ScholarPubMed
Ketter, T. A., Kimbrell, T. A., George, M. S. et al. (2001). Effects of mood and subtype on cerebral glucose metabolism in treatment-resistant bipolar disorder. Biological Psychiatry, 49, 97109.CrossRefGoogle ScholarPubMed
Kieseppä, T., Mäntylä, R., Tuulio-Henriksson, A. et al. (2014). White matter hyperintensities and cognitive performance in adult patients with bipolar I, bipolar II, and major depressive disorders. European Psychiatry, 29, 226–32.Google Scholar
Langan, C., McDonald, C. (2009). Neurobiological trait abnormalities in bipolar disorder. Molecular Psychiatry, 14, 833–46.Google Scholar
Laskaris, L. E., Di Biase, M. A., Everall, I. et al. (2016). Microglial activation and progressive brain changes in schizophrenia. British Journal of Pharmacology, 173, 666–80.Google Scholar
Lee, S. Y., Chen, S. L., Chen, S. H. et al. (2011). The COMT and DRD3 genes interacted in bipolar I but not bipolar II disorder. World Journal of Biological Psychiatry, 12, 385–91.Google Scholar
Lee, S. Y., Chen, S. L., Chen, S. H. et al. (2012). Interaction of the DRD3 and BDNF gene variants in subtyped bipolar disorder. Progress in Neuropsychopharmacology and Biological Psychiatry, 39, 382–7.Google Scholar
Li, C. T., Hsieh, J. C., Wang, S. J. et al. (2012). Differential relations between fronto-limbic metabolism and executive function in patients with remitted bipolar I and bipolar II disorder. Bipolar Disorders 14, 831–42.Google Scholar
Liberg, B., Rahm, C., Panayiotou, A. et al. (2016). Brain change trajectories that differentiate the major psychoses. European Journal of Clinical Investigation, 46, 658-74.Google Scholar
Liu, J. X., Chen, Y. S., Hsieh, J. C. et al. (2010). Differences in white matter abnormalities between bipolar I and II disorders. Journal of Affective Disorders, 127, 309–15.Google Scholar
Maggioni, E., Bianchi, A. M., Altamura, A. C. et al. (2017). The putative role of neuronal network synchronization as a potential biomarker for bipolar disorder: a review of EEG studies. Journal of Affective Disorders, 212, 167–70.Google Scholar
Mah, L., Zarate, C. A. Jr, Singh, J. et al (2007). Regional cerebral glucose metabolic abnormalities in bipolar II depression. Biological Psychiatry, 61, 765–75.Google Scholar
Mahon, K., Burdick, K. E., Szeszko, P. R. (2010). A role for white matter abnormalities in the pathophysiology of bipolar disorder. Neuroscience Biobehavioral Reviews, 34, 533–54.Google Scholar
Maller, J. J., Thaveenthiran, P., Thomson, R. H. et al. (2014). Volumetric, cortical thickness and white matter integrity alterations in bipolar disorder type I and II. Journal of Affective Disorders, 169, 118–27.CrossRefGoogle ScholarPubMed
Marchand, W. R., Lee, J. N., Garn, C. et al. (2011a). Aberrant emotional processing in posterior cortical midline structures in bipolar II depression. Progress in Neuropsychopharmacology and Biological Psychiatry, 35, 1729–37.CrossRefGoogle ScholarPubMed
Marchand, W. R., Lee, J. N., Garn, C. et al. (2011b). Striatal and cortical midline activation and connectivity associated with suicidal ideation and depression in bipolar II disorder. Journal of Affective Disorders, 133, 638–45.Google Scholar
Marchand, W. R., Lee, J. N., Johnson, S. et al. (2014). Abnormal functional connectivity of the medial cortex in euthymic bipolar II disorder. Progress in Neuropsychopharmacology and Biological Psychiatry, 51, 2833.Google Scholar
Michael, N., Erfurth, A. and Pfleiderer, B. (2009). Elevated metabolites within dorsolateral prefrontal cortex in rapid cycling bipolar disorder. Psychiatry Research, 172, 7881.Google Scholar
Miller, J. M., Everett, B. A., Oquendo, M. A. et al. (2016). Positron emission tomography quantification of serotonin transporter binding in medication-free bipolar disorder. Synapse, 70, 2432.Google Scholar
Monteleone, P., Serritella, C., Martiadis, V. et al. (2008). Decreased levels of serum brain-derived neurotrophic factor in both depressed and euthymic patients with unipolar depression and in euthymic patients with bipolar I and II disorders. Bipolar Disorders, 10, 95100.CrossRefGoogle ScholarPubMed
Munkholm, K., Vinberg, M., Kessing, K. Y. (2016). Peripheral blood brain-derived neurotrophic factor in bipolar disorder: a comprehensive systematic review and meta-analysis. Molecular Psychiatry, 21, 216–28.Google Scholar
Narita, K., Suda, M., Takei, Y. et al. (2011). Volume reduction of ventromedial prefrontal cortex in bipolar II patients with rapid cycling: a voxel-based morphometric study. Progress in Neuropsychopharmacology and Biological Psychiatry, 35, 439–45.Google Scholar
Nwulia, E. A., Miao, K., Zandi, P. P. et al. (2007). Genome-wide scan of bipolar II disorder. Bipolar Disorders, 9, 580–8.Google Scholar
Onitsuka, T., Oribe, N. and Kanba, S. (2013). Neurophysiological findings in patients with bipolar disorder. Supplements to Clinical Neurophysiology, 62, 197206.CrossRefGoogle ScholarPubMed
Pan, L., Keener, M. T., Hassel, S. et al. (2009). Functional neuroimaging studies of bipolar disorder: examining the wide clinical spectrum in the search for disease endophenotypes. International Review of Psychiatry, 21, 368–79.Google Scholar
Pantelis, C., Wannan, C., Bartholomeusz, C. F. et al. (2015). Cognitive Intervention in Early Psychosis – preserving abilities versus remediating deficits. Current Opinion in Behavioural Sciences, 4, 6372.Google Scholar
Pantelis, C., Yucel, M., Bora, E. et al. (2009a). Neurobiological markers of illness onset in psychosis and schizophrenia: the search for a moving target. Neuropsychological Review, 19, 385–98.Google Scholar
Pantelis, C., Yücel, M., Wood, S. J. et al. (2009b). Neurobiological endophenotypes of psychosis and schizophrenia: are there biological markers of illness onset? In The Recognition and Management of EarlyPsychosis: A Preventive Approach (ed. Jackson, H. J. and McGorry, P. D.), pp. 6180. Cambridge University Press: Cambridge, UK.Google Scholar
Pearlson, G. D., Wong, D. F., Tune, L. E. et al. (1995). In vivo D2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder. Archives of General Psychiatry, 52, 471–7.Google Scholar
Penfold, C., Vizueta, N., Townsend, J. D. et al. (2015). Frontal lobe hypoactivation in medication-free adults with bipolar II depression during response inhibition. Psychiatry Research, 231, 202–9.Google ScholarPubMed
Raffa, M., Barhoumi, S., Atig, F. et al. (2012). Reduced antioxidant defense systems in schizophrenia and bipolar I disorder. Progress in Neuropsychopharmacology & Biological Psychiatry, 39, 371–5.CrossRefGoogle ScholarPubMed
Rimol, L. M., Hartberg, C. B., Nesvåg, R. et al. (2010). Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biological Psychiatry, 68, 4150.Google Scholar
Russo, M., Van Rheenen, T. E., Shanahan, M. et al. (2017). Neurocognitive subtypes in patients with bipolar disorder and their unaffected siblings. Psychological Medicine, 47, 2892–905.Google Scholar
Samamé, C., Martino, D. J. and Strejilevich, S. A. (2015). An individual task meta-analysis of social cognition in euthymic bipolar disorders. Journal of Affective Disorders, 173, 146–53.Google Scholar
Sayana, P., Colpo, G. D., Simões, L. R. et al. (2017). A systematic review of evidence for the role of inflammatory biomarkers in bipolar patients. Journal of Psychiatric Research, 92, 160–82.Google Scholar
Serafini, G., Pompili, M., Innamorati, M. et al. (2010). Deep white matter hyperintensities as possible predictor of poor prognosis in a sample of patients with late-onset bipolar II disorder. Bipolar Disorders, 12, 755–6.Google Scholar
Silverstone, P. H. and McGrath, B. M. (2009). Lithium and valproate and their possible effects on themyo-inositol second messenger system in healthy volunteers and bipolar patients. International Review of Psychiatry, 21, 414–23.Google Scholar
Simonsen, C., Sundet, K., Vaskinn, A. et al. (2008). Neurocognitive profiles in bipolar I and bipolar II disorder: differences in pattern and magnitude of dysfunction. Bipolar Disorders, 10, 245–55.Google Scholar
Simpson, S., Baldwin, R. C., Jackson, A. et al. (1998). Is subcortical disease associated with a poor response to antidepressants? Neurological, neuropsychological and neuroradiological findings in late-life depression. Psychological Medicine, 28, 1015–26.CrossRefGoogle ScholarPubMed
Soares, A. T., Andreazza, A. C., Rej, S. et al. (2016). Decreased brain-derived neurotrophic factor in older adults with bipolar disorder. American Journal of Geriatric Psychiatry, 24, 596601.Google Scholar
Song, J., Kuja-Halkola, R., Sjölander, A., et al. (2017). Specificity in etiology of subtypes of bipolar disorder: evidence from a Swedish population-based family study. Biological Psychiatry, doi:10.1016/j.biopsych.2017.11.014.Google Scholar
Stahl, E., Forstner, A., McQuillin, A. et al. (2017). Genome-wide association study identifies 30 loci associated with bipolar disorder, bioRxiv, doi.org/10.1101/173062.Google Scholar
Suhara, T., Nakayama, K., Inoue, O. et al. (1992). D1dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology (Berl), 106, 1418.Google Scholar
Tighe, S. K., Reading, S. A., Rivkin, P. et al. (2012). Total white matter hyperintensity volume in bipolar disorder patients and their healthy relatives. Bipolar Disorders, 14, 888–93.CrossRefGoogle ScholarPubMed
Torrent, C., Martinez-Aran, A., Daban, C. et al. (2006). Cognitive impairment in bipolar II disorder. British Journal of Psychiatry, 189, 254–9.Google Scholar
Tost, H., Ruf, M., Schmäl, C. et al. (2010). Prefrontal-temporal gray matter deficits in bipolar disorder patients with persecutory delusions. Journal of Affective Disorders, 120, 5461.CrossRefGoogle ScholarPubMed
Uemura, T., Green, M. and Warsh, J. J. (2016). CACNA1C SNP rs1006737 associates with bipolar I disorder independent of the Bcl-2 SNP rs956572 variant and its associated effect on intracellular calcium homeostasis. World Journal of Biological Psychiatry, 17, 525–34.Google Scholar
Velakoulis, D., Wood, S. J., Wong, M. T. et al. (2006). Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Archives of General Psychiatry 63, 139–49.Google Scholar
Vizueta, N., Rudie, J. D., Townsend, J. D. et al. (2012). Regional fMRI hypoactivation and altered functional connectivity during emotion processing in nonmedicated depressed patients with bipolar II disorder. American Journal of Psychiatry. 169,831–40.Google Scholar
Wang, J. F. (2007). Defects of mitochondrial electron transport chain in bipolar disorder: implications for mood-stabilizing treatment. The Canadian Journal of Psychiatry, 52, 753–62.Google Scholar
Wang, T. Y., Lee, S. Y., Chen, S. L. et al. (2016b). The differential levels of inflammatory cytokines and BDNF among bipolar spectrum disorders. International Journal of Neuropsychopharmacology, 19. doi:10.1093/ijnp/pyw012Google Scholar
Wang, Y., Zhong, S., Jia, Y. et al. (2015). Reduced interhemispheric resting-state functional connectivity in unmedicated bipolar II disorder. Acta Psychiatrica Scandinavica. 132, 400–7.Google Scholar
Wang, Y., Zhong, S., Jia, Y. et al. (2016a). Disrupted resting-state functional connectivity in nonmedicated bipolar disorder, Radiology. 280, 529–36.CrossRefGoogle ScholarPubMed
Welander-Vatn, A. S., Jensen, J., Lycke, C. et al. (2009). No altered dorsal anterior cingulate activation in bipolar II disorder patients during a Go/No-go task: an fMRI study. Bipolar Disorders, 11, 270–9.Google Scholar
Winsberg, M. E., Sachs, N., Tate, D. L. et al. (2000). Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biological Psychiatry, 47, 475–81.Google Scholar
Yildiz-Yesiloglu, A. and Ankerst, D. P. (2006). Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Progress in Neuropsychopharmacology and Biological Psychiatry, 30, 969–95.CrossRefGoogle ScholarPubMed
Yip, S. W., Chandler, R. A., Rogers, R. D. et al. (2013). White matter alterations in antipsychotic- and mood stabilizer-naïve individuals with bipolar II/NOS disorder. Neuroimage Clinical, 3, 271–8.Google Scholar
Yip, S. W., Mackay, C. E. and Goodwin, G. M. (2014). Increased temporo-insular engagement in unmedicated bipolar II disorder: an exploratory resting state study using independent component analysis. Bipolar Disorders, 16, 748–55.Google Scholar
Yip, S. W., Worhunsky, P. D., Rogers, R. D. et al. (2015). Hypoactivation of the ventral and dorsal striatum during reward and loss anticipation in antipsychotic and mood stabilizer-naive bipolar disorder. Neuropsychopharmacology, 40, 658–66.Google Scholar
Yüksel, C. and Öngür, D. (2010). Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biological Psychiatry, 68, 785–94.Google Scholar
Yumru, M., Savas, H. A., Kalenderoglu, A. et al. (2009). Oxidative imbalance in bipolar disorder subtypes: a comparative study. Progress in Neuropsychopharmacology & Biological Psychiatry, 33, 1070–4.Google Scholar
Zhang, X., Zhang, Z., Sha, W. et al. (2010). Effect of treatment on serum glial cell line-derived neurotrophic factor in bipolar patients. Journal of Affective Disorders, 126, 326–9.Google Scholar
Zubieta, J. K., Taylor, S. F., Huguelet, P. et al. (2001). Vesicular monoamine transporter concentrations in bipolar disorder type I, schizophrenia, and healthy subjects. Biological Psychiatry, 49, 110–16.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×