Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T13:43:00.512Z Has data issue: false hasContentIssue false

3 - 3D spectroscopic instrumentation

Published online by Cambridge University Press:  06 August 2010

Evencio Mediavilla
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Santiago Arribas
Affiliation:
Space Telescope Science Institute, Baltimore
Martin Roth
Affiliation:
Astrophysikalisches Institut Potsdam
Jordi Cepa-Nogué
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Francisco Sánchez
Affiliation:
Centro Astronónomico Hispano-Alemán de Calar, Alto, Spain
Get access

Summary

In this chapter we review the challenges of, and opportunities for, 3D spectroscopy and how these have led to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4 m and 10 m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ‘3D’, including fibres, lenslets, slicers, and filtered multi slits. We also describe Fabry–Perot (FP) and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an overview of plans for such future instruments on today's large telescopes, in space and in the coming era of extremely large telescopes. Currently-planned instruments open new domains but also leave significant areas of parameter space vacant, beckoning further development.

Fundamental challenges and considerations

The detector limit I: six into two dimensions

Astronomical data exist within a six-dimensional hypercube sampling two spatial dimensions, one spectral dimension, one temporal dimension, and two polarizations. In contrast, high-efficiency, panoramic digital detectors today are only two-dimensional (with some limited exceptions).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×