Published online by Cambridge University Press: 06 July 2019
Isothermal titration calorimetry combined with surface complexation modeling is an ideal technique to provide further characterization of microbial surface reactivity towards protons and metal ions. This technique can produce enthalpies of protonation and metal ion coordination of acidic functional groups on microbial surfaces. This information is critical for understanding the thermodynamic driving force of surface complexation and provides key information for the indirect identification of surface ligands. Topics covered in this chapter include how this technique complements traditional methods of microbial surface reactivity, necessary system characterization prior to performing calorimetric experiments, how to prepare biomass and solutions for calorimetric titrations, difficult aspects of this technique, and data analysis and interpretation.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.