Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T17:22:10.068Z Has data issue: false hasContentIssue false

2 - Bayesian approach

from Part I - General discussion

Published online by Cambridge University Press:  05 August 2015

Shinji Watanabe
Affiliation:
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts
Jen-Tzung Chien
Affiliation:
National Chiao Tung University, Taiwan
Get access

Summary

This chapter describes a general concept and statistics of the Bayesian approach. The Bayesian approach covers wide areas of statistics (Bernardo & Smith 2009, Gelman, Carlin, Stern et al. 2013), pattern recognition (Fukunaga 1990), machine learning (Bishop 2006, Barber 2012), and applications of these approaches. In this chapter, we start the discussion from the basic probabilistic theory, and mainly describe the Bayesian approach by aiming to follow a machine learning fashion of constructing and refining statistical models from data. The role of the Bayesian approach in machine learning is very important since the Bayesian approach provides a systematic way to infer unobserved variables (e.g., classification category, model parameters, latent variables, model structure) given data. This chapter limits the discussions considering the speech and language problems in the latter chapters, by providing simple probabilistic rules, and prior and posterior distributions in Section 2.1. The section also provides analytical solutions of posterior distributions of simple models. Based on the basic introduction, Section 2.2 introduces a useful representation of the relationship of probabilistic variables in the Bayesian approach, called the Graphical model. The graphical model representation gives us an intuitive view of statistical models even when they have complicated relationships between their variables. Section 2.3 explains the difference between Bayesian and maximum likelihood (ML) approaches. The following chapters extend the general Bayesian approach described in this chapter to deal with statistical models in speech and language processing.

Bayesian probabilities

This section describes the basic Bayesian framework based on probabilistic theory. Although some of the definitions, equations, and concepts are trivial, this section reviews the basics to assist readers to fully understand the Bayesian approach.

In the Bayesian approach, all the variables that are introduced when models are parameterized, such as model parameters and latent variables, are regarded as probabilistic variables. Thus, let a be a discrete valuable, then the Bayesian approach deals with a as a probabilistic variable, and aims to obtain p (a):

Hereinafter, we assume that a is a discrete variable, and the expectation is performed by the summation over a for simplicity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×