Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-18T17:24:16.553Z Has data issue: false hasContentIssue false

Part II - Behavioural Interactions Between Invaders and Native Species

Published online by Cambridge University Press:  27 October 2016

Judith S. Weis
Affiliation:
Rutgers University, New Jersey
Daniel Sol
Affiliation:
National Spanish Research Council (CSIC)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adler, L.S. and Irwin, R.E. (2005). Ecological costs and benefits of defenses in nectar. Ecology, 86(11), 29682978.CrossRefGoogle Scholar
Albrecht, M., Padrón, B., Bartomeus, I. and Traveset, A. (2014). Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks. Proceedings of the Royal Society B: Biological Sciences, 281(1788), 20140773.CrossRefGoogle ScholarPubMed
Bartomeus, I. (2013). Understanding linkage rules in plant–pollinator networks by using hierarchical models that incorporate pollinator detectability and plant traits. PLoS ONE, 8(7), e69200.CrossRefGoogle ScholarPubMed
Bartomeus, I. and Winfree, R. (2013). Pollinator declines: reconciling scales and implications for ecosystem services. F1000Research, 2.CrossRefGoogle ScholarPubMed
Bartomeus, I., Vilà, M. and Santamaría, L. (2008). Contrasting effects of invasive plants in plant–pollinator networks. Oecologia, 155(4), 761770.CrossRefGoogle ScholarPubMed
Bartomeus, I., Ascher, J.S., Gibbs, J., et al. (2013). Historical changes in north-eastern US bee pollinators related to shared ecological traits. Proceedings of the National Academy of Sciences, USA, 110(12), 46564660.CrossRefGoogle Scholar
Bascompte, J. and Jordano, P. (2007). Plant-animal mutualistic networks: the architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 567593.CrossRefGoogle Scholar
Bezemer, T.M., Harvey, J.A. and Cronin, J.T. (2014). Response of native insect communities to invasive plants. Annual Review of Entomology, 59, 119141.CrossRefGoogle ScholarPubMed
Bjerknes, A.L., Totland, Ø., Hegland, S.J. and Nielsen, A. (2007). Do alien plant invasions really affect pollination success in native plant species? Biological Conservation, 138(1), 112.CrossRefGoogle Scholar
Blüthgen, N. (2010). Why network analysis is often disconnected from community ecology: a critique and an ecologist's guide. Basic and Applied Ecology, 11(3), 185195.CrossRefGoogle Scholar
Brosi, B.J. and Briggs, H.M. (2013). Single pollinator species losses reduce floral fidelity and plant reproductive function. Proceedings of the National Academy of Sciences, 110(32), 1304413048.CrossRefGoogle ScholarPubMed
Byers, C.R., Steinhorst, R.K. and Krausman, P.R. (1984). Clarification of a technique for analysis of utilization-availability data. The Journal of Wildlife Management, 10501053.CrossRefGoogle Scholar
Cariveau, D.P. and Norton, A.P. (2009). Spatially contingent interactions between an exotic and native plant mediated through flower visitors. Oikos, 118(1), 107114.CrossRefGoogle Scholar
Carnicer, J., Abrams, P.A. and Jordano, P. (2008). Switching behavior, coexistence and diversification: comparing empirical community-wide evidence with theoretical predictions. Ecology Letters, 11, 802808.CrossRefGoogle ScholarPubMed
Carvalheiro, L.G., Barbosa, E.R.M. and Memmott, J. (2008). Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study. Journal of Applied Ecology, 45(5), 14191427.CrossRefGoogle Scholar
Carvalheiro, L.G., Biesmeijer, J.C., Benadi, G., et al. (2014). The potential for indirect effects between co‐flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecology Letters, 17(11), 13891399.CrossRefGoogle ScholarPubMed
Chittka, L. and Niven, J. (2009). Are bigger brains better? Current Biology, 19(21), R995R1008.CrossRefGoogle ScholarPubMed
Chittka, L. Gumbert, A. and Kunze, J. (1997). Foraging dynamics of bumblebees: correlates of movements within and between plant species. Behavioral Ecology, 8(3), 239249.CrossRefGoogle Scholar
Chrobock, T., Winiger, P., Fischer, M. and van Kleunen, M. (2013). The cobblers stick to their lasts: pollinators prefer native over alien plant species in a multi-species experiment. Biological Invasions, 15(11), 25772588.CrossRefGoogle Scholar
Corbet, S.A., Bee, J., Dasmahapatra, K., et al. (2001). Native or exotic? Double or single? Evaluating plants for pollinator-friendly gardens. Annals of Botany, 87(2), 219232.Google ScholarPubMed
Crone, E.E. (2013). Responses of social and solitary bees to pulsed floral resources. The American Naturalist, 182(4), 465473.CrossRefGoogle ScholarPubMed
Dietzsch, A.C., Stanley, D.A. and Stout, J.C. (2011). Relative abundance of an invasive alien plant affects native pollination processes. Oecologia, 167(2), 469479.CrossRefGoogle ScholarPubMed
Dukas, R. and Real, A.L. (1993). Learning constraints and floral choice behaviour in bumblebees. Animal Behaviour, 46, 637644.CrossRefGoogle Scholar
Forrest, J. and Thomson, J.D. (2009). Pollinator experience, neophobia and the evolution of flowering time. Proceedings of the Royal Society B: Biological Sciences, 276(1658), 935943.CrossRefGoogle ScholarPubMed
Fründ, J., Linsenmair, K.E. and Blüthgen, N. (2010). Pollinator diversity and specialization in relation to flower diversity. Oikos, 119(10), 15811590.CrossRefGoogle Scholar
Gibson, M.R., Richardson, D.M. and Pauw, A. (2012). Can floral traits predict an invasive plant's impact on native plant–pollinator communities? Journal of Ecology, 100(5), 12161223.CrossRefGoogle Scholar
González-Varo, J.P., Biesmeijer, J.C., Bommarco, R., et al. (2013). Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 28(9), 524530.CrossRefGoogle ScholarPubMed
Gumbert, A. (2000). Color choices by bumblebees (Bombus terrestris): innate preferences and generalization after learning. Behavioral Ecology and Sociobiology, 48(1), 3643.CrossRefGoogle Scholar
Heleno, R.H., Ceia, R.S., Ramos, J.A. and Memmott, J. (2009). Effects of alien plants on insect abundance and biomass: a food‐web approach. Conservation Biology, 23(2), 410419.CrossRefGoogle ScholarPubMed
Herrmann, F., Westphal, C., Moritz, R.F. and Steffan-Dewenter, I. (2007). Genetic diversity and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) in agricultural landscapes. Molecular Ecology, 16(6), 11671178.CrossRefGoogle ScholarPubMed
Hobbs, R.J. (ed.). (2000). Invasive Species in a Changing World. Washington DC: Island Press.Google Scholar
Inouye, D.W. (1978). Resource partitioning in bumblebees: experimental studies of foraging behavior. Ecology, 59(4), 672678.CrossRefGoogle Scholar
Ivlev, V.S. (1964). Experimental Ecology of the Feeding of Fishes. New Haven, CT: Yale University Press.Google Scholar
Jakobsson, A. and Padrón, B. (2014). Does the invasive Lupinus polyphyllus increase pollinator visitation to a native herb through effects on pollinator population sizes? Oecologia, 174(1), 217226.CrossRefGoogle ScholarPubMed
Johnson, L.K. and Hubell, P. (1975). Contrasting foraging strategies and coexistence of two bee species on a single resource. Ecology, 56(6), 13981406.CrossRefGoogle Scholar
Kaiser‐Bunbury, C.N., Muff, S., Memmott, J., Müller, C.B. and Caflisch, A. (2010). The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecology Letters, 13(4), 442452.CrossRefGoogle Scholar
Kevan, P.G. and Menzel, R. (2012). The plight of pollination and the interface of neurobiology, ecology and food security. The Environmentalist, 32(3), 300310.CrossRefGoogle Scholar
Kleijn, D. and Raemakers, I. (2008). A retrospective analysis of pollen host plant use by stable and declining bumblebee species. Ecology, 89(7), 18111823.CrossRefGoogle Scholar
Klein, A.M., Vaissiere, B.E., Cane, J.H., et al. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303313.CrossRefGoogle ScholarPubMed
Lopezaraiza-Mikel, M.E., Hayes, R.B., Whalley, M.R. and Memmott, J. (2007). The impact of an alien plant on a native plant–pollinator network: an experimental approach. Ecology Letters, 10(7), 539550.CrossRefGoogle ScholarPubMed
Montero-Castaño, A. (2014). Interacciones entre polinizadores y la planta exótica Hedysarum coronarium a distintas escalas espaciales. PhD thesis. Madrid, Spain: Universidad Complutense de Madrid.Google Scholar
Montero‐Castaño, A. and Vilà, M. (2012). Impact of landscape alteration and invasions on pollinators: a meta‐analysis. Journal of Ecology, 100(4), 884893.CrossRefGoogle Scholar
Morales, C.L. and Traveset, A. (2009). A meta‐analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co‐flowering native plants. Ecology Letters, 12(7), 716728.CrossRefGoogle ScholarPubMed
Morales, C.L., Arbetman, M.P., Cameron, S.A. and Aizen, M.A. (2013). Rapid ecological replacement of a native bumblebee by invasive species. Frontiers in Ecology and the Environment, 11(10), 529534.CrossRefGoogle Scholar
Moroń, D., Lenda, M., Skórka, P., et al. (2009). Wild pollinator communities are negatively affected by invasion of alien goldenrods in grassland landscapes. Biological Conservation, 142(7), 13221332.CrossRefGoogle Scholar
Muñoz, A.A. and Cavieres, L.A. (2008). The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities. Journal of Ecology, 96(3), 459467.CrossRefGoogle Scholar
Neu, C.W., Byers, C.R. and Peek, J.M. (1974). A technique for analysis of utilization-availability data. The Journal of Wildlife Management, 38, 541545.CrossRefGoogle Scholar
Nienhuis, C.M., Dietzsch, A.C. and Stout, J.C. (2009). The impacts of an invasive alien plant and its removal on native bees. Apidologie, 40(4), 450463.CrossRefGoogle Scholar
Ollerton, J., Winfree, R. and Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321326.CrossRefGoogle Scholar
Padrón, B., Traveset, A., Biedenweg, T., et al. (2009). Impact of alien plant invaders on pollination networks in two archipelagos. PLoS ONE, 4(7), e6275.CrossRefGoogle ScholarPubMed
Palladini, J.D. and Maron, J.L. (2014). Reproduction and survival of a solitary bee along native and exotic floral resource gradients. Oecologia, 176(3), 789798.CrossRefGoogle ScholarPubMed
Parker, I.M. (1997). Pollinator limitation of Cytisus scoparius (Scotch broom), an invasive exotic shrub. Ecology, 78(5), 14571470.CrossRefGoogle Scholar
Pearse, I.S., Harris, D.J., Karban, R. and Sih, A. (2013). Predicting novel herbivore–plant interactions. Oikos, 122(11), 15541564.CrossRefGoogle Scholar
Potts, S.G., Biesmeijer, J.C., Kremen, C., et al. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 25(6), 345353.CrossRefGoogle ScholarPubMed
Pyšek, P., Richardson, D.M., Rejmánek, M., et al. (2004). Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon, 53(1), 131143.CrossRefGoogle Scholar
Riffell, J.A., Alarcón, R., Abrell, L., et al. (2008). Behavioral consequences of innate preferences and olfactory learning in hawkmoth–flower interactions. Proceedings of the National Academy of Sciences, USA, 105(9), 34043409.CrossRefGoogle ScholarPubMed
Roulston, T.H. and Cane, J.H. (2000). Pollen nutritional content and digestibility for animals. Plant Systematics and Evolution, 222(1–4), 187209.CrossRefGoogle Scholar
Roulston, T.A.H. and Goodell, K. (2011). The role of resources and risks in regulating wild bee populations. Annual Review of Entomology, 56, 293312.CrossRefGoogle ScholarPubMed
Sedivy, C., Müller, A. and Dorn, S. (2011). Closely related pollen generalist bees differ in their ability to develop on the same pollen diet: evidence for physiological adaptations to digest pollen. Functional Ecology, 25(3), 718725.CrossRefGoogle Scholar
Stang, M., Klinkhamer, P.G., Waser, N.M., Stang, I. and van der Meijden, E. (2009). Size-specific interaction patterns and size matching in a plant–pollinator interaction web. Annals of Botany, 103(9), 14591469.CrossRefGoogle Scholar
Steffan-Dewenter, I. and Schiele, S. (2008). Do resources or natural enemies drive bee population dynamics in fragmented habitats. Ecology, 89(5), 13751387.CrossRefGoogle ScholarPubMed
Stelzer, R.J., Chittka, L., Carlton, M. and Ings, T.C. (2010). Winter active bumblebees (Bombus terrestris) achieve high foraging rates in urban Britain. PLoS ONE, 5(3), e9559.CrossRefGoogle ScholarPubMed
Stouffer, D.B., Cirtwill, A.R. and Bascompte, J. (2014). How exotic plants integrate into pollination networks. Journal of Ecology, 102(6), 14421450.CrossRefGoogle ScholarPubMed
Stout, J.C. and Morales, C.L. (2009). Ecological impacts of invasive alien species on bees. Apidologie, 40(3), 388409.CrossRefGoogle Scholar
Tepedino, V.J., Bradley, B.A. and Griswold, T.L. (2008). Might flowers of invasive plants increase native bee carrying capacity? Intimations from Capitol Reef National Park, Utah. Natural Areas Journal, 28(1), 4450.CrossRefGoogle Scholar
Thébault, E. and Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329(5993), 853856.CrossRefGoogle ScholarPubMed
Thompson, R.M., Brose, U., Dunne, J.A., et al. (2012). Food webs: reconciling the structure and function of biodiversity. Trends in Ecology and Evolution, 27(12), 689697.CrossRefGoogle ScholarPubMed
Traveset, A. and Richardson, D.M. (2006). Biological invasions as disruptors of plant reproductive mutualisms. Trends in Ecology and Evolution, 21(4), 208216.CrossRefGoogle ScholarPubMed
Valdovinos, F.S., Ramos‐Jiliberto, R., Flores, J.D., Espinoza, C. and López, G. (2009). Structure and dynamics of pollination networks: the role of alien plants. Oikos, 118(8), 11901200.CrossRefGoogle Scholar
Valdovinos, F.S., Ramos‐Jiliberto, R., Garay‐Narváez, L., Urbani, P. and Dunne, J.A. (2010). Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecology Letters, 13(12), 15461559.CrossRefGoogle ScholarPubMed
Vilà, M., Bartomeus, I., Dietzsch, A.C., et al. (2009). Invasive plant integration into native plant–pollinator networks across Europe. Proceedings of the Royal Society B: Biological Sciences, 276(1674), 38873893.CrossRefGoogle ScholarPubMed
Vilà, M., Espinar, J.L., Hejda, M., et al. (2011). Ecological impacts of invasive alien plants: a meta‐analysis of their effects on species, communities and ecosystems. Ecology Letters, 14(7), 702708.CrossRefGoogle ScholarPubMed
Waser, N.M., Chittka, L., Price, M.V., Williams, N.M. and Ollerton, J. (1996). Generalization in pollination systems and why it matters. Ecology, 77(4), 10431060.CrossRefGoogle Scholar
Waters, S.M., Fisher, S.E. and Hille Ris Lambers, J. (2014). Neighborhood‐contingent indirect interactions between native and exotic plants: multiple shared pollinators mediate reproductive success during invasions. Oikos, 123(4), 433440.CrossRefGoogle Scholar
Westphal, C., Steffan‐Dewenter, I. and Tscharntke, T. (2003). Mass flowering crops enhance pollinator densities at a landscape scale. Ecology Letters, 6(11), 961965.CrossRefGoogle Scholar
Williams, N.M. and Kremen, C. (2007). Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecological Applications, 17(3), 910921.CrossRefGoogle Scholar
Williams, N.M., Cariveau, D., Winfree, R. and Kremen, C. (2011). Bees in disturbed habitats use, but do not prefer, alien plants. Basic and Applied Ecology, 12(4), 332341.CrossRefGoogle Scholar
Winfree, R., Bartomeus, I. and Cariveau, D.P. (2011). Native pollinators in anthropogenic habitats. Annual Review of Ecology, Evolution and Systematics, 42(1), 1.CrossRefGoogle Scholar

References

Avilés, J.M. and Møller, A.P. (2003). Meadow pipit (Anthus pratensis) egg appearance in cuckoo (Cuculus canorus) sympatric and allopatric populations. Biological Journal of the Linnean Society, 79, 543549.CrossRefGoogle Scholar
Avilés, J.M. and Parejo, D. (2011). Host personalities and the evolution of behavioural adaptations in brood parasitic–host systems. Animal Behaviour, 82, 613618.CrossRefGoogle Scholar
Avilés, J.M., Bootello, E.M., Molina-Morales, M. and Martínez, J.G. (2014). The multidimensionality of behavioural defences against brood parasites: evidence for a behavioural syndrome in magpies? Behavioral Ecology and Sociobiology, 68, 12871298.CrossRefGoogle Scholar
Baker, A.J. and Moeed, A. (1987). Rapid genetic differentiation and founder effect in colonizing populations of common mynas (Acridotheres tristis). Evolution, 41, 525538.Google ScholarPubMed
Baker, J., Harvey, K.J. and French, K. (2014). Threats from introduced birds to native birds. Emu, 114, 112.CrossRefGoogle Scholar
Barnagaud, J.-Y., Papaix, J., Gimenez, O. and Svenning, J.-C. (2015). Dynamic spatial interactions between the native invader brown-headed cowbird and its hosts. Diversity and Distributions, 21, 511522.CrossRefGoogle Scholar
Björklund, M., Ruiz, I. and Senar, J.C. (2010). Genetic differentiation in the urban habitat: the great tits (Parus major) of the parks of Barcelona city. Biological Journal of the Linnean Society, 99, 919.CrossRefGoogle Scholar
Blackburn, T., Lockwood, J. and Cassey, P. (2009). Avian Invasions. Oxford: Oxford University Press.CrossRefGoogle Scholar
Briskie, J.V. and Mackintosh, M. (2004). Hatching failure increases with severity of population bottlenecks in birds. Proceedings of the National Academy of Sciences, USA, 101, 558561.CrossRefGoogle ScholarPubMed
Briskie, J.V., Sealy, S.G. and Hobson, K.A. (1992). Behavioral defenses against avian brood parasitism in sympatric and allopatric host populations. Evolution, 46, 334340.CrossRefGoogle ScholarPubMed
Cruz, A. and Wiley, J.W. (1989). The decline of an adaptation in the absence of a presumed selection pressure. Evolution, 43, 5562.CrossRefGoogle ScholarPubMed
Cruz, A., Post, W., Wiley, J.W., et al. (1998). Potential impacts of cowbird range expansion in Florida. In Parasitic Birds and their Hosts, ed. Rothstein, S.I. and Robinson, S.K. New York: Oxford University Press, pp. 313336.CrossRefGoogle Scholar
Cruz, A., Prather, J.W., Wiley, J.W. and Weaver, P.F. (2008). Egg rejection behavior in a population exposed to parasitism: village weavers on Hispaniola. Behavioral Ecology, 19, 398403.CrossRefGoogle Scholar
Davies, N.B. and Brooke, M.L. (1989). An experimental study of co-evolution between the cuckoo, Cuculus canorus, and its hosts. I. Host egg discrimination. Journal of Animal Ecology, 58, 207224.CrossRefGoogle Scholar
Diamond, J.M. (1986). Overview: laboratory experiments, field experiments, and natural experiments. In Community Ecology, ed. Diamond, J.M. and Case, T.J. New York: Harper and Row, pp. 322.Google Scholar
Dinets, V., Samas, P., Croston, R., Grim, T. and Hauber, M.E. (2015). Predicting the responses of native birds to transoceanic invasions by avian brood parasites. Journal of Field Ornithology, 86, 244251.CrossRefGoogle Scholar
Douda, K., Vrtílek, M., Slavík, O. and Reichard, M. (2012). The role of host specificity in explaining the invasion success of the freshwater mussel Anodonta woodiana in Europe. Biological Invasions, 14, 127137.CrossRefGoogle Scholar
Erritzøe, J., Mann, C.F., Brammer, F.P. and Fuller, R.A. (2012). Cuckoos of the World. Helm Identification Guides. London: Christopher Helm.Google Scholar
Evans, K.L., Hatchwell, B.J., Parnell, M. and Gaston, K.J. (2010). A conceptual framework for the colonisation of urban areas: the blackbird Turdus merula as a case study. Biological Reviews, 85, 643667.CrossRefGoogle ScholarPubMed
Feeney, W.E., Welbergen, J.A. and Langmore, N.E. (2014). Advances in the study of coevolution between avian brood parasites and their hosts. Annual Review of Ecology, Evolution, and Systematics, 45, 227246.CrossRefGoogle Scholar
Foster, S.A. and Endler, J.A. (1999). Geographic Variation in Behavior. New York: Oxford University Press.CrossRefGoogle Scholar
Friedmann, H. (1963). Host Relations of the Parasitic Cowbirds. United States National Museum Bulletin No. 233. Washington, DC: Smithsonian Institution.CrossRefGoogle Scholar
Friedmann, H. (1971). Further information on the host relations of the parasitic cowbirds. Auk, 88, 239255.CrossRefGoogle Scholar
Friedmann, H. and Kiff, L.F. (1985). The parasitic cowbirds and their hosts. Proceedings of the Western Foundation of Vertebrate Zoology, 2, 225302.Google Scholar
Friedmann, H., Kiff, L.F. and Rothstein, S.I. (1977). A Further Contribution to Knowledge of the Host Relations of the Parasitic Cowbirds. Smithsonian Contributions to Zoology No. 235. City of Washington: Smithsonian Institution Press.CrossRefGoogle Scholar
Gil, D. and Brumm, H. (2014). Avian Urban Ecology, Oxford, UK: Oxford University Press.Google Scholar
Grim, T., Samas, P., Moskát, C., et al. (2011). Constraints on host choice: why do parasitic birds rarely exploit some common potential hosts? Journal of Animal Ecology, 80, 508518.CrossRefGoogle ScholarPubMed
Grim, T., Samas, P. and Hauber, M.E. (2014). The repeatability of avian egg ejection behaviors across different temporal scales, breeding stages, female ages and experiences. Behavioral Ecology and Sociobiology, 68, 749759.CrossRefGoogle Scholar
Hale, K. and Briskie, J.V. (2007). Response of introduced European birds in New Zealand to experimental brood parasitism. Journal of Avian Biology, 38, 198204.CrossRefGoogle Scholar
Hauber, M.E. and Kilner, R.M. (2007). Coevolution, communication, and host-chick mimicry in parasitic finches: who mimics whom? Behavioral Ecology and Sociobiology, 61, 497503.CrossRefGoogle Scholar
Honza, M., Procházka, P., Stokke, B.G., et al. (2004). Are blackcaps current winners in the evolutionary struggle against the common cuckoo? Journal of Ethology, 22, 175180.CrossRefGoogle Scholar
Hurlbert, S.H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54, 187211.CrossRefGoogle Scholar
Igic, B., Cassey, P., Grim, T., et al. (2012). A shared chemical basis of avian host–parasite egg colour mimicry. Proceedings of the Royal Society B: Biological Sciences, 279, 10681076.CrossRefGoogle ScholarPubMed
Johnsgard, P.A. (1997). The Avian Brood Parasites. New York: Oxford University Press.CrossRefGoogle Scholar
Joseph, L., Wilke, T. and Alpers, D. (2002). Reconciling genetic expectations from host specificity with historical population dynamics in an avian brood parasite, Horsfield's bronze-cuckoo Chalcites basalis of Australia. Molecular Ecology, 11, 829837.CrossRefGoogle Scholar
Kelly, C.D. (2006). Replicating empirical research in behavioral ecology: how and why it should be done but rarely ever is. Quarterly Review in Biology, 81, 221236.CrossRefGoogle Scholar
Kuehn, M.J., Peer, B.D. and Rothstein, S.I. (2014). Variation in host response to brood parasitism reflects evolutionary differences and not phenotypic plasticity. Animal Behaviour, 88, 2128.CrossRefGoogle Scholar
Lahti, D.C. (2005). Evolution of bird eggs in the absence of cuckoo parasitism. Proceedings of the National Academy of Sciences, USA, 102, 1805718062.CrossRefGoogle ScholarPubMed
Lahti, D.C. (2006). Persistence of egg recognition in the absence of cuckoo brood parasitism: pattern and mechanism. Evolution, 60, 157168.Google ScholarPubMed
Lahti, D.C. (2008). Population differentiation and rapid evolution of egg color in accordance with solar radiation. Auk, 125, 796802.CrossRefGoogle Scholar
Lahti, D.C. and Lahti, A.R. (2002). How precise is egg discrimination in weaverbirds? Animal Behaviour, 63, 11351142.CrossRefGoogle Scholar
Lahti, D.C., Johnson, N.A., Ajie, B.C., et al. (2009). Relaxed selection in the wild. Trends in Ecology and Evolution, 24, 487496.CrossRefGoogle ScholarPubMed
Liang, W., Yang, C., Wang, L. and Møller, A.P. (2013). Avoiding parasitism by breeding indoors: cuckoo parasitism of hirundines and rejection of eggs. Behavioral Ecology and Sociobiology, 67, 913918.CrossRefGoogle Scholar
Lowther, P. (2014). Brood parasitism: host lists. Available at: http://www.fieldmuseum.org/science/blog/brood-parasitism-host-lists, accessed 9 November 2014.Google Scholar
Lyon, B.E. and Eadie, J.M.A. (2004). An obligate brood parasite trapped in the intraspecific arms race of its hosts. Nature, 432, 390393.CrossRefGoogle ScholarPubMed
Marín, M. (2000). The shiny cowbird (Molothrus bonariensis) in Chile: introduction or dispersion? Ornitologia Neotropical, 11, 285296.Google Scholar
Martín-Vivaldi, M., Soler, J.J., Møller, A. P., Pérez-Contreras, T. and Soler, M. (2013). The importance of nest-site and habitat in egg recognition ability of potential hosts of the common cuckoo Cuculus canorus. Ibis, 155, 140155.CrossRefGoogle Scholar
Miranda, A.C., Schielzeth, H., Sonntag, T. and Partecke, J. (2013). Urbanization and its effects on personality traits: a result of microevolution or phenotypic plasticity? Global Change Biology, 19, 26342644.CrossRefGoogle ScholarPubMed
Moksnes, A. and Røskaft, E. (1995). Egg-morphs and host preference in the common cuckoo (Cuculus canorus): an analysis of cuckoo and host eggs from European museum collections. Journal of Zoology, 236, 625648.CrossRefGoogle Scholar
Moksnes, A., Røskaft, E., Braa, A.T., et al. (1991). Behavioural responses of potential hosts towards artificial cuckoo eggs and dummies. Behaviour, 116, 6489.CrossRefGoogle Scholar
Møller, A.P., Díaz, M., Flensted‐Jensen, E., et al. (2015). Urbanized birds have superior establishment success in novel environments. Oecologia, 178, 943950.CrossRefGoogle ScholarPubMed
Morand, S. and Krasnov, B.R. (2010). The Biogeography of Host–Parasite Interaction. Oxford, UK: Oxford University Press.Google Scholar
Moskát, C., Szentpéteri, J. and Barta, Z. (2002). Adaptations by great reed warblers to brood parasitism: a comparison of populations in sympatry and allopatry with the common cuckoo. Behaviour, 139, 13131329.CrossRefGoogle Scholar
Moskát, C., Hansson, B., Barabás, L., Bártol, I. and Karcza, Z. (2008). Common cuckoo Cuculus canorus parasitism, antiparasite defence and gene flow in closely located populations of great reed warblers Acrocephalus arundinaceus. Journal of Avian Biology, 39, 663671.CrossRefGoogle Scholar
Nakamura, H., Kubota, S. and Suzuki, R. (1998). Coevolution between the common cuckoo and its major hosts in Japan. In Parasitic Birds and Their Hosts, ed. Rothstein, S.I. and Robinson, S.K. New York: Oxford University Press, pp. 94112.CrossRefGoogle Scholar
Payne, R.B. (2005). The Cuckoos. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Payne, R. B. (2010). Family Viduidae (whydahs and indigobirds). In Handbook of the Birds of the World, Vol. 15. Weavers to New World Warblers, ed. del Hoyo, J., Elliott, A. and Christie, D.A. Barcelona, Spain: Lynx Edicions, pp. 198232.Google Scholar
Peer, B.D. and Sealy, S.G. (2004). Correlates of egg rejection in hosts of the brown-headed cowbird. Condor, 106, 580599.CrossRefGoogle Scholar
Peer, B.D., Kuehn, M.J., Rothstein, S.I. and Fleischer, R.C. (2011). Persistence of host defence behaviour in the absence of avian brood parasitism. Biology Letters, 7, 670673.CrossRefGoogle ScholarPubMed
Post, W. and Sykes, P.W. (2011). Reproductive status of the shiny cowbird in North America. Wilson Journal of Ornithology, 123, 151154.CrossRefGoogle Scholar
Ricklefs, R.E. and Wikelski, M. (2002). The physiology/life-history nexus. Trends in Ecology and Evolution, 17, 462168.CrossRefGoogle Scholar
Robert, M. and Sorci, G. (1999). Rapid increase of host defence against brood parasites in a recently parasitized area: the case of village weavers in Hispaniola. Proceedings of the Royal Society B: Biological Sciences, 266, 941946.CrossRefGoogle Scholar
Rothstein, S.I. (1990). A model system for coevolution: avian brood parasitism. Annual Review of Ecology and Systematics, 21, 481508.CrossRefGoogle Scholar
Rothstein, S.I. (2001). Relic behaviours, coevolution and the retention versus loss of host defences after episodes of avian brood parasitism. Animal Behaviour, 61, 95107.CrossRefGoogle ScholarPubMed
Rothstein, S.I. and Peer, B.D. (2005). Conservation solutions for threatened and endangered cowbird (Molothrus spp.) hosts: separating fact from fiction. Ornithological Monographs, 57, 98114.CrossRefGoogle Scholar
Samas, P., Hauber, M.E., Cassey, P. and Grim, T. (2011). Repeatability of foreign egg rejection: testing the assumptions of co-evolutionary theory. Ethology, 117, 606619.CrossRefGoogle Scholar
Samas, P., Polacikova, L., Hauber, M.E., Cassey, P. and Grim, T. (2012). Egg rejection behavior and clutch characteristics of the European greenfinch introduced to New Zealand. Chinese Birds, 3, 330338.CrossRefGoogle Scholar
Samas, P., Grim, T., Hauber, M.E., et al. (2013). Ecological predictors of reduced avian reproductive investment in the southern hemisphere. Ecography, 36, 809818.CrossRefGoogle Scholar
Samas, P., Hauber, M.E., Cassey, P. and Grim, T. (2014a). Host responses to interspecific brood parasitism: a by-product of adaptations to conspecific parasitism? Frontiers in Zoology, 11, 34.CrossRefGoogle ScholarPubMed
Samas, P., Hauber, M.E., Cassey, P. and Grim, T. (2014b). The evolutionary causes of egg rejection in European thrushes (Turdus spp.): a reply to M. Soler. Frontiers in Zoology, 11, 72.CrossRefGoogle Scholar
Smith, J.N.M., Cook, T.L., Rothstein, S.I., et al. (2000). Ecology and Management of Cowbirds and Their Hosts. Austin, TX: University of Texas Press.Google Scholar
Sol, D., Maspons, J., Vall-Ilosera, M., et al. (2012). Unraveling the life history of successful invaders. Science, 337, 580583.CrossRefGoogle ScholarPubMed
Soler, J.J., Martínez, J.G., Soler, M. and Møller, A.P. (1999). Genetic and geographic variation in rejection behavior of cuckoo eggs by European magpie populations: an experimental test of rejecter-gene flow. Evolution, 53, 947956.CrossRefGoogle ScholarPubMed
Spottiswoode, C.N. and Stevens, M. (2012). Host–parasite arms races and rapid changes in bird egg appearance. American Naturalist, 179, 633648.CrossRefGoogle ScholarPubMed
Stokke, B.G., Hafstad, I., Rudolfsen, G., et al. (2008). Predictors of resistance to brood parasitism within and among reed warbler populations. Behavioral Ecology, 19, 612620.CrossRefGoogle Scholar
Thompson, J.N. (1998). Rapid evolution as an ecological process. Trends in Ecology and Evolution, 13, 329332.CrossRefGoogle ScholarPubMed
Thompson, J.N. (2005). The Geographic Mosaic of Coevolution, Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Thorogood, R. and Davies, N.B. (2013). Reed warbler hosts fine-tune their defences to track three decades of cuckoo decline. Evolution, 67, 35453555.CrossRefGoogle ScholarPubMed
Tojo, H. and Nakamura, S. (2014). The first record of brood parasitism on the introduced red-billed leiothrix in Japan. Ornithological Science, 13, 4752.CrossRefGoogle Scholar
Trnka, A. and Grim, T. (2014). Testing for correlations between behaviours in a cuckoo host: why do host defences not covary? Animal Behaviour, 92, 185193.CrossRefGoogle Scholar
Vikan, J.R., Stokke, B.G., Rutila, R., et al. (2010). Evolution of defences against cuckoo (Cuculus canorus) parasitism in bramblings (Fringilla montifringilla): a comparison of four populations in Fennoscandia. Evolutionary Ecology, 24, 11411157.CrossRefGoogle Scholar
Woodworth, B.L. (1997). Brood parasitism, nest predation, and season-long reproductive success of a tropical island endemic. Condor, 99, 605621.CrossRefGoogle Scholar
Yang, C., Liang, W., Antonov, A., et al. (2012). Diversity of parasitic cuckoos and their hosts in China. Chinese Birds, 3, 932.CrossRefGoogle Scholar
Yang, C., Liu, Y., Zeng, L. and Liang, W. (2014). Egg color variation, but not egg rejection behavior, changes in a cuckoo host breeding in the absence of brood parasitism. Ecology and Evolution, 4, 22392246.CrossRefGoogle ScholarPubMed

References

Alizon, S. and Van Baalen, M. (2008). Multiple infections, immune dynamics, and the evolution of virulence. The American Naturalist, 172, E150E168.CrossRefGoogle ScholarPubMed
Aluja, M., Cabrera, M., Guillen, J., Celedonio, H. and Ayora, F. (1989). Behaviour of Anastrepha ludens, A. obliqua and A. serpentina (Diptera: Tephritidae) on a wild mango tree (Mangifera indica) harbouring three McPhail traps. International Journal of Tropical Insect Science, 10, 309318.CrossRefGoogle Scholar
Bateman, A.J. (1948). Intra-sexual selection in Drosophila. Heredity, 2, 349368.CrossRefGoogle ScholarPubMed
Berger-Tal, O., Polak, T., Oron, A., et al. (2011). Integrating animal behavior and conservation biology: a conceptual framework. Behavioral Ecology, arq224.CrossRefGoogle Scholar
Birtele, D. and Hardersen, S. (2012). Analysis of vertical stratification of Syrphidae (Diptera) in an oak-hornbeam forest in northern Italy. Ecological Research, 27, 755763.CrossRefGoogle Scholar
Brearley, G., Rhodes, J., Bradley, A., et al. (2013). Wildlife disease prevalence in human‐modified landscapes. Biological Reviews, 88, 427442.CrossRefGoogle ScholarPubMed
Bulgarella, M., Quiroga, M.A., Dregni, J.S., et al. (2015). Philornis downsi (Diptera: Muscidae), an avian nest parasite invasive to the Galápagos Islands, in mainland Ecuador. Annals of the Entomological Society of America, sav026.CrossRefGoogle Scholar
Caro, T. (1999). The behaviour–conservation interface. Trends in Ecology and Evolution, 14, 366369.CrossRefGoogle ScholarPubMed
Caro, T. and Riggio, J. (2014). Conservation and behavior of Africa's ‘Big Five’. Current Zoology, 60(4), 486499.CrossRefGoogle Scholar
Caro, T. and Sherman, J. (2011). Endangered species and a threatened discipline: behavioural ecology. Trends in Ecology and Evolution, 26, 111118.CrossRefGoogle Scholar
Causton, C.E., Peck, S.B., Sinclair, B.J., et al. (2006). Alien insects: threats and implications for the conservation of the Galápagos Islands. Annals of the Entomological Society of America, 99, 121143.CrossRefGoogle Scholar
Causton, C., Cunninghame, F. and Tapia, W. (2013). Management of the avian parasite Philornis downsi in the Galápagos Islands: a collaborative and strategic action plan. In Galápagos Report 2011–2012. Puerto Ayora, Galapagos, Ecuador: GNPS, GCREG, CDF and GC, pp. 167173.Google Scholar
Cimadom, A., Ulloa, A., Meidl, P., et al. (2014). Invasive parasites, habitat change and heavy rainfall reduce breeding success in Darwin's finches. PLoS ONE, 9, e107518.CrossRefGoogle ScholarPubMed
Collett, T. and Land, M. (1975). Visual control of flight behaviour in the hoverfly Syritta pipiens L. Journal of Comparative Physiology, 99, 166.CrossRefGoogle Scholar
Daly, E.W. and Johnson, P.T. (2011). Beyond immunity: quantifying the effects of host anti-parasite behavior on parasite transmission. Oecologia, 165, 10431050.CrossRefGoogle ScholarPubMed
Deem, S., Jiménez-Uzcátegui, G. and Ziemmeck, F. (2011). CDF checklist of Galapagos zoopathogens and parasites. In Galápagos Report 2011–2012. Puerto Ayora, Galapagos, Ecuador: GNPS, GCREG, CDF and GC.Google Scholar
DeVries, P.J., Murray, D. and Lande, R. (1997). Species diversity in vertical, horizontal, and temporal dimensions of a fruit‐feeding butterfly community in an Ecuadorian rainforest. Biological Journal of the Linnean Society, 62, 343364.CrossRefGoogle Scholar
Dudaniec, R.Y. and Kleindorfer, S. (2006). The effects of the parasitic flies Philornis (Diptera, Muscidae) on birds. EMU, 106, 1320.CrossRefGoogle Scholar
Dudaniec, R.Y., Hallas, G. and Kleindorfer, S. (2005). Blood and intestinal parasitism in Darwin's finches: negative and positive findings. Acta Zoologica Sinica, 51, 507512.Google Scholar
Dudaniec, R.Y., Kleindorfer, S. and Fessl, B. (2006). Effects of the introduced ectoparasite Philornis downsi on haemoglobin level and nestling survival in Darwin's small ground finch (Geospiza fuliginosa). Austral Ecology, 31, 8894.CrossRefGoogle Scholar
Dudaniec, R.Y., Fessl, B. and Kleindorfer, S. (2007). Interannual and interspecific variation on intensity of the parasitic fly, Philornis downsi, in Darwin's finches. Biological Conservation, 139, 325332.CrossRefGoogle Scholar
Dudaniec, R.Y., Gardner, M.G., Donellan, S. and Kleindorfer, S. (2008). Genetic variation in the invasive avian parasite, Philornis downsi (Diptera, Muscidae) on the Galápagos archipelago. BMC Ecology, 8, 13.CrossRefGoogle ScholarPubMed
Dudaniec, R.Y., Gardner, M.G. and Kleindorfer, S. (2010). Offspring genetic structure reveals mating and nest infestation behaviour of an invasive parasitic fly (Philornis downsi) of Galápagos birds. Biological Invasions, 12, 581592.CrossRefGoogle Scholar
Duffy, M.A. and Sivars‐Becker, L. (2007). Rapid evolution and ecological host–parasite dynamics. Ecology Letters, 10, 4453.CrossRefGoogle ScholarPubMed
Dvorak, M., Fessl, B., Nemeth, E., Kleindorfer, S. and Tebbich, S. (2012). Distribution and abundance of Darwin's finches and other land birds on Santa Cruz Island, Galápagos: evidence for declining populations. Oryx, 46, 7886.CrossRefGoogle Scholar
Fessl, B., Couri, M. and Tebbich, S. (2001). Philornis downsi Dodge and Aitken, new to the Galápagos Islands, (Diptera, Muscidae). Studia Dipterologica, 8, 317322.Google Scholar
Fessl, B., Kleindorfer, S. and Tebbich, S. (2006a). An experimental study on the effects of an introduced parasite in Darwin's finches. Biological Conservation, 127, 5561.CrossRefGoogle Scholar
Fessl, B., Sinclair, B.J. and Kleindorfer, S. (2006b). The life cycle of Philornis downsi (Diptera: Muscidae) parasitizing Darwin's finches and its impacts on nestling survival. Parasitology, 133, 739747.CrossRefGoogle ScholarPubMed
Fessl, B., Young, H.G., Young, R.P., et al. (2010). How to save the rarest Darwin's finch from extinction: the mangrove finch on Isabela Island. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 10191030.CrossRefGoogle ScholarPubMed
Fowler, K. and Partridge, L. (1989). A cost of mating in female fruitflies. Nature, 338, 760761.CrossRefGoogle Scholar
Galligan, T.H. and Kleindorfer, S. (2009). Naris and beak malformation caused by the parasitic fly, Philornis downsi (Diptera: Muscidae), in Darwin's small ground finch, Geospiza fuliginosa (Passeriformes: Emberizidae). Biological Journal of the Linnean Society, 98, 9.CrossRefGoogle Scholar
Gersabeck, E.F. and Merritt, R.W. (1983). Vertical and temporal aspects of Alsynite® panel sampling for adult Stomoxys calcitrans (L.)(Diptera: Muscidae). Florida Entomologist, 66, 222227.CrossRefGoogle Scholar
Gottdenker, N.L., Walsh, T., Jiménez-Uzcátegui, G., et al. (2008). Causes of mortality of wild birds submitted to the Charles Darwin Research Station, Santa Cruz, Galápagos, Ecuador from 2002–2004. Journal of Wildlife Diseases, 44, 10241031.CrossRefGoogle Scholar
Grant, P.R. and Grant, B.R. (2008). How and Why Species Multiply: The Radiation of Darwin's Finches. Princeton, NJ: Princeton University Press.Google Scholar
Grant, P.R., Grant, B.R., Petren, K. and Keller, L.F. (2005). Extinction behind our backs: the possible fate of one of the Darwin's finch species on Isla Floreana, Galápagos. Biological Conservation, 122, 499503.CrossRefGoogle Scholar
Herczeg, T., Blahó, M., Száz, D., et al. (2014). Seasonality and daily activity of male and female tabanid flies monitored in a Hungarian hill-country pasture by new polarization traps and traditional canopy traps. Parasitology Research, 113, 110.CrossRefGoogle Scholar
Huber, S.K. (2008). Effects of the introduced parasite Philornis downsi on nestling growth and mortality in the medium ground finch (Geospiza fortis). Biological Conservation, 141, 601609.CrossRefGoogle Scholar
Huber, S.K., Owen, J.P., Koop, J.A., et al. (2010). Ecoimmunity in Darwin's finches: Invasive parasites trigger acquired immunity in the medium ground finch (Geospiza fortis). PLoS ONE, 5, e8605.CrossRefGoogle ScholarPubMed
Irvin, N., Wratten, S., Frampton, C., et al. (1999). The phenology and pollen feeding of three hover fly (Diptera: Syrphidae) species in Canterbury, New Zealand. New Zealand Journal of Zoology, 26, 105115.CrossRefGoogle Scholar
Kaltz, O. and Shykoff, J. A. (1998). Local adaptation in host–parasite systems. Heredity, 81, 361370.CrossRefGoogle Scholar
Kawecki, T.J. and Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7, 12251241.CrossRefGoogle Scholar
Kilpatrick, A.M. (2011). Globalization, land use, and the invasion of West Nile virus. Science, 334, 323327.CrossRefGoogle ScholarPubMed
Kleindorfer, S. (2007a). Nesting success in Darwin's small tree finch (Camarhynchus parvulus): Evidence of female preference for older males and more concealed nests. Animal Behaviour, 74, 795804.CrossRefGoogle Scholar
Kleindorfer, S. (2007b). The ecology of clutch size variation in Darwin's small ground finch Geospiza fuliginosa: comparison between lowland and highland habitats. Ibis, 149, 730741.CrossRefGoogle Scholar
Kleindorfer, S. and Dudaniec, R.Y. (2006). Increasing prevalence of avian poxvirus in Darwin's finches and its effect on male pairing success. Journal of Avian Biology, 37, 6976.CrossRefGoogle Scholar
Kleindorfer, S. and Dudaniec, R.Y. (2009). Love thy neighbour? Social nesting pattern, host mass and nest size affect ectoparasite intensity in Darwin's tree finches. Behavioural Ecology and Sociobiology, 63, 731739.CrossRefGoogle Scholar
Kleindorfer, S. and Dudaniec, R.Y. (2016). Host-parasite ecology, behavior and genetics: a review of the introduced fly parasite Philornis downsi and its Darwin's finch hosts. BMC Zoology, 1:1.CrossRefGoogle Scholar
Kleindorfer, S., Peters, K.J., Custance, G., Dudaniec, R.Y. and O'Connor, J.A. (2014a). Changes in Philornis infestation behavior threaten Darwin's finch survival. Current Zoology, 60, 542550.CrossRefGoogle Scholar
Kleindorfer, S., O'Connor, J.A., Dudaniec, R.Y., et al. (2014b). Species collapse via hybridization in Darwin's tree finches. The American Naturalist, 183, 325341.CrossRefGoogle ScholarPubMed
Kleindorfer, S. and Sulloway, F.J. (2016). Naris deformation in Darwin's Finches: Experimental and historical evidence for a post-1960s arrival of the parasite Philornis downsi. Global Ecology and Conservation, 7, 122131.CrossRefGoogle Scholar
Knutie, S.A., Koop, J.A., French, S.S. and Clayton, D.H. (2013). Experimental test of the effect of introduced hematophagous flies on corticosterone levels of breeding Darwin's finches. General and Comparative Endocrinology, 193, 6871.CrossRefGoogle ScholarPubMed
Knutie, S.A., Mcnew, S.M., Bartlow, A.W., Vargas, D.A. and Clayton, D.H. (2014). Darwin's finches combat introduced nest parasites with fumigated cotton. Current Biology, 24, R355R356.CrossRefGoogle ScholarPubMed
Koop, J.a.H., Huber, S.K., Laverty, S.M. and Clayton, D.H. (2011). Experimental demonstration of the fitness consequences of an introduced parasite of Darwin's finches. PLoS ONE, 6, e19706.CrossRefGoogle ScholarPubMed
Koop, J.A., Le Bohec, C. and Clayton, D.H. (2013). Dry year does not reduce invasive parasitic fly prevalence or abundance in Darwin's finch nests. Reports Parasitology, 3, 1117.CrossRefGoogle Scholar
Kovaliski, J., Sinclair, R., Mutze, G., et al. (2014). Molecular epidemiology of rabbit haemorrhagic disease virus in Australia: when one became many. Molecular Ecology, 23, 408420.CrossRefGoogle ScholarPubMed
Land, M. and Eckert, H. (1985). Maps of the acute zones of fly eyes. Journal of Comparative Physiology A, 156, 525538.CrossRefGoogle Scholar
Maguire, D.Y., Robert, K., Brochu, K., et al. (2014). Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies. Environmental Entomology, 43, 917.CrossRefGoogle Scholar
Mavoungou, J.F., Kohagne, T.L., Acapovi‐Yao, G.L., et al. (2013). Vertical distribution of Stomoxys spp. (Diptera: Muscidae) in a rainforest area of Gabon. African Journal of Ecology, 51, 147153.CrossRefGoogle Scholar
McCallum, H. (2008). Tasmanian devil facial tumour disease: lessons for conservation biology. Trends in Ecology and Evolution, 23, 631637.CrossRefGoogle ScholarPubMed
Morales, V. (2013). Endoparásitos en varios pinzones de Darwin e cautiverio y pinzones silvestres en la isla Santa Cruz, Provincia Insular Galápagos, Ecuador-2008. Repositorio Digital Universidad Politecnica Salesiana.Google Scholar
Nelson, X.J. (2014). Animal behavior can inform conservation policy, we just need to get on with the job – or can it? Current Zoology, 60, 479485.CrossRefGoogle Scholar
O'Connor, J.A., Dudaniec, R.Y. and Kleindorfer, S. (2010a). Parasite infestation in Galápagos birds: contrasting two elevational habitats between islands. Journal of Tropical Ecology, 26, 285292.CrossRefGoogle Scholar
O'Connor, J.A., Robertson, J. and Kleindorfer, S. (2010b). Video analysis of host–parasite interactions in Darwin's finch nests. Oryx, 44, 588594.CrossRefGoogle Scholar
O'Connor, J.A., Sulloway, F.J. and Kleindorfer, S. (2010c). Avian population survey in the Floreana Highlands: Is the medium tree finch declining in remnant patches of Scalesia forest? Bird Conservation International, 20, 343353.CrossRefGoogle Scholar
O'Connor, J.A., Sulloway, F.J., Robertson, J. and Kleindorfer, S. (2010d). Philornis downsi parasitism is the primary cause of nestling mortality in the critically endangered Darwin's medium tree finch (Camarhynchus pauper). Biodiversity and Conservation, 19, 853866.CrossRefGoogle Scholar
O'Connor, J.A., Robertson, J. and Kleindorfer, S. (2014). Darwin's finch begging intensity does not honestly signal need in parasitised nests. Ethology, 120, 228237.CrossRefGoogle Scholar
Palestis, B.G. (2014). The role of behavior in tern conservation. Current Zoology, 60, 500514.CrossRefGoogle Scholar
Parker, P.G., Buckles, E.L., Farrington, H., et al. (2011). 110 years of avipoxvirus in the Galápagos Islands. PLoS ONE, 6, e15989.CrossRefGoogle ScholarPubMed
Peters, K.J. (2016). Unravelling the Dynamics of Hybridisation and its Implications for Ecology and Conservation of Darwin’s Tree Finches. Adelaide: Flinders University, School of Biological Sciences, p. 207.Google Scholar
Peters, K.J. and Kleindorfer, S. (2015). Divergent foraging behavior in a hybrid zone: Darwin's tree finches (Camarhynchus spp.) on Floreana Island. Current Zoology, 61, 181190.CrossRefGoogle Scholar
Quiroga, M.A., Reboreda, J.C. and Beltzer, A.H. (2012). Host use by Philornis sp. in a passerine community in central Argentina. Revista Mexicana de Biodiversidad, 83, 110116.CrossRefGoogle Scholar
Roberts, D. (1985). Vertical distribution of flying black-flies (Diptera: Simuliidae) in Central Nigeria. Tropical Medicine and Parasitology: Official Organ of Deutsche Tropenmedizinische Gesellschaft and of Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ), 36, 102104.Google ScholarPubMed
Santiago-Alarcon, D., Tanksley, S.M. and Parker, P.G. (2006). Morphological variation and genetic structure of Galápagos Dove (Zenaida galapagoensis) populations: issues in conservation for the Galápagos bird fauna. The Wilson Journal of Ornithology, 118, 194207.CrossRefGoogle Scholar
Sulloway, F.J. and Kleindorfer, S. (2013). Adaptive divergence in Darwin's small ground finch (Geospiza fuliginosa): divergent selection along a cline. Biological Journal of the Linnean Society, 110, 4559.CrossRefGoogle Scholar
Svensson, E.I., Runemark, A., Verzijden, M.N. and Wellenreuther, M. (2014). Sex differences in developmental plasticity and canalization shape population divergence in mate preferences. Proceedings of the Royal Society B: Biological Sciences, 281, 20141636.CrossRefGoogle ScholarPubMed
Swanson, D., Adler, P. and Malmqvist, B. (2012). Spatial stratification of host‐seeking Diptera in boreal forests of northern Europe. Medical and Veterinary Entomology, 26, 5662.CrossRefGoogle ScholarPubMed
Takahashi, Y. and Watanabe, M. (2010). Female reproductive success is affected by selective male harassment in the damselfly Ischnura senegalensis. Animal Behaviour, 79, 211216.CrossRefGoogle Scholar
Thiel, T., Whiteman, N.K., Tirapé, A., et al. (2005). Characterization of canarypox-like viruses infecting endemic birds in the Galápagos Islands. Journal of Wildlife Diseases, 41, 342353.CrossRefGoogle ScholarPubMed
Van Gossum, H., Stoks, R. and De Bruyn, L. (2001). Frequency-dependent male mate harassment and intra-specific variation in its avoidance by females of the damselfly Ischnura elegans. Behavioral Ecology and Sociobiology, 51, 6975.Google Scholar
Van Hennekeler, K., Jones, R., Skerratt, L., Muzari, M. and Fitzpatrick, L. (2011). Meteorological effects on the daily activity patterns of tabanid biting flies in northern Queensland, Australia. Medical and Veterinary Entomology, 25, 1724.CrossRefGoogle ScholarPubMed
Villa, S.M., Le Bohec, C., Koop, J.A., Proctor, H.C. and Clayton, D.H. (2013). Diversity of feather mites (Acari: Astigmata) on Darwin's finches. The Journal of Parasitology, 99, 756762.CrossRefGoogle ScholarPubMed
Wiedenfeld, D.A., Jimènez, G., Fessl, B., Kleindorfer, S. and Valerezo, J.C. (2007). Distribution of the introduced parasitic fly Philornis downsi (Diptera, Muscidae) in the Galápagos Islands. Pacific Conservation Biology, 13, 1419.CrossRefGoogle Scholar
Wigby, S. and Chapman, T. (2005). Sex peptide causes mating costs in female Drosophila melanogaster. Current Biology, 15, 316321.CrossRefGoogle ScholarPubMed
Wikelski, M., Foufopoulos, J., Vargas, H. and Snell, H. (2004). Galápagos birds and diseases: invasive pathogens as threats for island species. Ecology and Society, 9, 5.CrossRefGoogle Scholar
Zeil, J. (1983). Sexual dimorphism in the visual system of flies: the free flight behaviour of male Bibionidae (Diptera). Journal of Comparative Physiology, 150, 395412.CrossRefGoogle Scholar
Zeil, J. (1986). The territorial flight of male houseflies (Fannia canicularis L.). Behavioral Ecology and Sociobiology, 19, 213219.CrossRefGoogle Scholar
Zylberberg, M., Lee, K.A., Klasing, K.C. and Wikelski, M. (2012). Increasing avian pox prevalence varies by species, and with immune function, in Galápagos finches. Biological Conservation, 153, 7279.CrossRefGoogle Scholar

References

Albins, M.A. and Hixon, M.A. (2008). Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Marine Ecology Progress Series, 367, 233238.CrossRefGoogle Scholar
Altieri, A.H., Bertness, M.D., Coverdale, T.C., Herrmann, N.C. and Angelini, C. (2012). A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology, 93, 14021410.CrossRefGoogle ScholarPubMed
Bailey, R.J., Dick, J.T., Elwood, R.W. and MacNeil, C. (2006). Predatory interactions between the invasive amphipod Gammarus tigrinus and the native opossum shrimp, Mysis relicta. Journal of North American Benthological Society, 25, 393405.CrossRefGoogle Scholar
Barbaresi, S. and Gherardi, F. (2000). The invasion of the alien crayfish Procambarus clarkii in Europe, with particular reference to Italy. Biological Invasions, 2, 259264.CrossRefGoogle Scholar
Barbiero, R.P. and Tuchman, M.L. (2004). Changes in the crustacean communities of Lakes Michigan, Huron, and Erie following the invasion of the predatory cladoceran Bythotrephes longimanus. Canadian Journal of Fisheries and Aquatic Sciences, 61, 21112125.CrossRefGoogle Scholar
Barbour, A.B., Montgomery, M.L., Adamson, A.A., Diaz-Ferguson, E. and Silliman, B.R. (2010). Mangrove use by the invasive lionfish Pterois volitans. Marine Ecology Progress Series, 401, 291294.CrossRefGoogle Scholar
Barton, D., Johnson, R.A., Campbell, L., Petruniak, J. and Patterson, M. (2005). Effects of round gobies (Neogobius melanostomus) on dreissenid mussels and other invertebrates in Eastern Lake Erie, 2002–2004. Journal of Great Lakes Research, 31 Suppl. 2, 252261.CrossRefGoogle Scholar
Baum, J.K. and Worm, B. (2009). Cascading top-down effects of changing oceanic predator abundances. Journal of Animal Ecology, 78, 699714.CrossRefGoogle ScholarPubMed
Baxter, C.V., Fausch, K.D., Murakami, M. and Chapman, P.L. (2004). Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology, 85, 26562663.CrossRefGoogle Scholar
Beckman, C. and Shine, R. (2011). Toad's tongue for breakfast: exploitation of a novel prey type, the invasive cane toad, by scavenging raptors in tropical Australia. Biological Invasions, 13, 14471455.CrossRefGoogle Scholar
Berg, D.J. and Garton, D.W. (1988). Seasonal abundance of the exotic predatory Cladoceran, Bythotrephes cederstroemi, in Western Lake Erie. Journal of Great Lakes Research, 14, 479488.CrossRefGoogle Scholar
Bollache, L., Kaldonski, N., Troussard, J.P., Lagrue, C. and Rigaud, T. (2006). Spines and behaviour as defences against fish predators in an invasive freshwater amphipod. Animal Behaviour, 72, 627633.CrossRefGoogle Scholar
Boudreau, S.A. and Yan, N.D. (2003). The differing crustacean zooplankton communities of Canadian Shield lakes with and without the nonindigenous zooplanktivore Bythotrephes longimanus. Canadian Journal of Fisheries and Aquatic Sciences, 60, 13071313.CrossRefGoogle Scholar
Branstrator, D. (1995). Ecological interactions between Bythotrephes cederstroemi and Leptodora kindtii and the implications for species replacement in Lake Michigan. Journal of Great Lakes Research, 21, 670679.CrossRefGoogle Scholar
Bur, M., Klarer, D.M. and Kriege, K.A. (1986). First records of a European Cladoceran, Bythotrephes cederstroemi, in Lakes Erie and Huron. Journal of Great Lakes Research, 12, 144146.CrossRefGoogle Scholar
Cabrera-Guzman, E., Crossland, M. and Shine, R. (2012). Predation on the eggs and larvae of invasive cane toads (Rhinella marina) by native aquatic invertebrates in tropical Australia. Biological Conservation, 153, 109.CrossRefGoogle Scholar
Carlton, J.T. (2001). Introduced Species in US Coastal Waters: Environmental Impacts and Management Priorities. Arlington, VA: Pew Oceans Commission.Google Scholar
Casellato, S., Visentin, A. and Piana, G. (2007). The predatory impact of Dikerogammarus villosus on fish. In Biological Invaders in Inland Waters: Profiles, Distribution and Threats. Invading Nature – Springer Series in Invasion Ecology, Volume 2, Part 5, ed. Gherardi, F. Berlin: Springer, pp. 495506.Google Scholar
Chapple, D.G., Simmonds, S.M. and Wong, B.B. (2011). Can behavioral and personality traits influence the success of unintentional species introductions? Trends in Ecology and Evolution, 27, 5764.CrossRefGoogle ScholarPubMed
Correa, C., Bravo, A.P. and Hendry, A.P. (2012). Reciprocal trophic niche shifts in native and invasive fish: salmonids and galaxiids in Patagonian lakes. Freshwater Biology, 57, 17691781.CrossRefGoogle Scholar
Côté, I.M. and Maljkovi, A. (2010). Predation rates of Indo-Pacific lionfish on Bahamian coral reefs. Marine Ecology Progress Series, 404, 219225.CrossRefGoogle Scholar
Coverdale, T.C., Axelman, E.E., Brisson, C.P., et al. (2013). New England salt marsh recovery: opportunistic colonization of an invasive species and its nonconsumptive effects. PLoS ONE, 8(8): e73823.CrossRefGoogle Scholar
Crossland, M.R., Brown, G.P., Anstis, M., Shilton, C.M. and Shine, R. (2008). Mass mortality of native anuran tadpoles in tropical Australia due to invasive cane toad (Bufo marinus). Biological Conservation, 141, 23872394.CrossRefGoogle Scholar
Crossland, M.R., Hearndon, M.N., Pizzatto, L., Alford, R.A. and Shine, R. (2011). Why be a cannibal? The benefits to cane toad, Rhinella marina (=Bufo marinus) tadpoles of consuming conspecific eggs. Animal Behaviour, 82, 775782.CrossRefGoogle Scholar
Crowl, T.A., Townsend, C.R. and McIntosh, A.R. (1992). The impact of introduced brown and rainbow trout on native fish: the case of Australasia. Reviews of Fish Biology and Fisheries, 2, 217241.CrossRefGoogle Scholar
deRivera, C.E., Ruiz, G.M., Hines, A.H. and Jivoff, P. (2005). Biotic resistance to invasion: native predator limits abundance and distribution of an introduced crab. Ecology, 86, 33643376.CrossRefGoogle Scholar
Dick, J.T. and Platvoet, D. (2000). Invading predatory crustacean Dikerogamarus villosus eliminates both native and exotic species. Proceedings of the Royal Society, 267, 977983.CrossRefGoogle ScholarPubMed
Dubs, D. and Corkum, L. (1996). Behavioral interactions between round gobies (Neogobius melanstomus) and mottled sculpins (Cottus bairdi). Journal of Great Lakes Research, 22, 838844.CrossRefGoogle Scholar
Elkins, D. and Grossman, G. (2014). Invasive rainbow trout affect habitat use, feeding efficiency, and spatial organization of warpaint shiners. Biological Invasions, 16, 919933.CrossRefGoogle Scholar
Elton, C.S. (1958). The Ecology of Invasions by Animals and Plants. London: Methuen.CrossRefGoogle Scholar
Evans, M.S. (1988). Bythotrephes cederstroemi: its new appearance in Lake Michigan. Journal of Great Lakes Research, 14, 234240.CrossRefGoogle Scholar
Fausch, K.D. (2007). Introduction, establishment and effects of non-native salmonids: Considering the risk of rainbow trout invasion in the United Kingdom. Journal of Fish Biology, 71, 132.CrossRefGoogle Scholar
Finenko, G., Romanova, Z.A., Abolmasova, G.I., et al. (2006). Ctenophores-invaders and their role in the trophic dynamics of the planktonic community in the coastal regions off the Crimean coasts of the Black Sea (Sevastopol Bay). Okeanologiya, 46, 507517.Google Scholar
Garvey, J.E., Stein, R.A. and Thomas, H.M. (1994). Assessing how fish predation and interspecific prey competition influence a crayfish assemblage. Ecology, 75, 532547.CrossRefGoogle Scholar
Gherardi, F., Renai, B. and Corti, C. (2001). Crayfish predation on tadpoles: a comparison between a native (Austropotamobius pallipes) and an alien species (Procambarus clarkii). Bulletin Francais de Pêche Pisciculture, 361, 659668.CrossRefGoogle Scholar
Gherardi, F., Mavuti, K.M., Pacini, N., Tricarico, E. and Harper, D.M. (2011). The smell of danger: chemical recognition of fish predators by the invasive crayfish Procambarus clarkii. Freshwater Biology, 56, 15671578.CrossRefGoogle Scholar
Green, S.J., Dulvy, N.K., Brooks, A.M., et al. (2014). Linking removal targets to the ecological effects of invaders: a predictive model and field test. Ecological Applications, 24, 13111322.CrossRefGoogle Scholar
Greenlees, M.J., Phillips, B.L. and Shine, R. (2010). Adjusting to a toxic invader: native Australian frogs learn not to prey on cane toads. Behavioral Ecology, 21, 966971.CrossRefGoogle Scholar
Grosholz, E.D. (2005). Recent biological invasions may hasten invasional meltdown by accelerating historical introductions. Proceedings of the National Academy of Sciences, USA, 102, 10881091.CrossRefGoogle ScholarPubMed
Harding, J.M. (2003). Predation by blue crabs, Callinectes sapidus, on rapa whelks, Rapana venosa: possible natural controls for an invasive species? Journal of Experimental Marine Biology and Ecology, 297, 161177.CrossRefGoogle Scholar
Hill, A.M. and Lodge, D. (1999). Replacement of resident crayfishes by an exotic crayfish: the roles of competition and predation. Ecological Applications, 9, 678690.CrossRefGoogle Scholar
Hitt, N.P., Frissell, C.A., Muhlfeld, C.C. and Allendorf, F.W. (2003). Spread of hybridization between native westslope cutthroat trout, Oncorhynchus clarki lewisi, and nonnative rainbow trout, Oncorhynchus mykiss. Canadian Journal of Fisheries and Aquatic Sciences, 60, 14401451.CrossRefGoogle Scholar
Hogan, L.S., Marschall, E., Folt, C. and Stein, R.A. (2007). How non-native species in Lake Erie influence trophic transfer of mercury and lead to top predators. Journal of Great Lakes Research, 33, 4661.CrossRefGoogle Scholar
Joseph, M.B., Piovia-Scott, J., Lawler, S.P. and Pope, K.L. (2011). Indirect effects of introduced trout on Cascades frogs (Rana cascadae) via shared aquatic prey. Freshwater Biology, 56, 828838.CrossRefGoogle Scholar
Kobak, J., Jermacz, Ł. and Płąchocki, D. (2014). Effectiveness of zebra mussels to act as shelters from fish predators differs between native and invasive amphipod prey. Aquatic Ecology, 48, 397408.CrossRefGoogle Scholar
Krisp, H. and Maier, G. (2005). Consumption of macroinvertebrates by invasive and native gammarids: a comparison. Journal of Limnology, 64, 5559.CrossRefGoogle Scholar
Letnic, M., Webb, J.K. and Shine, R. (2008). Invasive cane toads (Bufo marinus) cause mass mortality of freshwater crocodiles (Crocodylus johnstoni) in tropical Australia. Biological Conservation, 141, 17731782.CrossRefGoogle Scholar
Llewelyn, J., Webb, J.K., Schwartzkopf, L., Alford, R. and Shine, R. (2010). Behavioural responses of carnivorous marsupials (Planigale maculata) to toxic invasive cane toads (Bufo marinus). Austral Ecology, 35, 560567.CrossRefGoogle Scholar
Lohrer, A.M. and Whitlatch, R.B. (2002). Interactions among aliens: apparent replacement of one exotic species by another. Ecology, 83, 710732.CrossRefGoogle Scholar
MacDonald, J.A., Roudez, R., Glover, T. and Weis, J.S. (2007). The invasive green crab and Japanese shore crab: behavioral interactions with a native crab species, the blue crab. Biological Invasions, 9, 837848.CrossRefGoogle Scholar
MacNeil, C., Dick, J., Alexander, M.E., Dodd, J.A. and Ricciardi, A. (2013). Predators vs. alien: differential biotic resistance to an invasive species by two resident predators. Neobiota, 19, 119.Google Scholar
Mann, R. and Harding, J.M. (2003). Salinity tolerance of larval Rapana venosa: Implications for dispersal and establishment of an invading predatory gastropod on the North American Atlantic Coast. Biological Bulletin, 204, 96103.CrossRefGoogle ScholarPubMed
Morris, J.A. and Akins, J.L. (2009). Feeding ecology of the invasive lionfish (Pterois volitans) in the Bahaman archipelago. Environmental Biology of Fishes, 86, 389398.CrossRefGoogle Scholar
Murrell, M.C. and Hollibaugh, J.T. (1998). Microzooplankton grazing in northern San Francisco Bay measured by the dilution method. Aquatic Microbial Ecology, 15, 5363.CrossRefGoogle Scholar
Naddafi, R. and Rudstam, L.G. (2013). Predator-induced behavioural defences in two competitive invasive species: the zebra mussel and the quagga mussel. Animal Behaviour, 86, 12751284.CrossRefGoogle Scholar
Naddafi, R. and Rudstam, L.G. (2014). Predation on invasive zebra mussel, Dreissena polymorpha, by pumpkinseed sunfish, rusty crayfish, and round goby. Hydrobiologia, 721, 107115.CrossRefGoogle Scholar
Nunez, M.A., Kuebbing, S., Dimarco, R.D. and Simberloff, D. (2012). Invasive species: to eat or not to eat, that is the question. Conservation Letters, 5, 334341.CrossRefGoogle Scholar
O'Donnell, S., Webb, J.K. and Shine, R. (2010). Conditioned taste aversion enhances the survival of an endangered predator imperiled by a toxic invader. Journal of Applied Ecology, 47, 558565.CrossRefGoogle Scholar
Paine, R.T. (1966). Food web complexity and species diversity. American Naturalist, 100, 6573.CrossRefGoogle Scholar
Pangle, K.L. and Peacor, S.D. (2006). Non-lethal effect of the invasive predator Bythotrephes longimanus on Daphnia mendotae. Freshwater Biology, 51, 10701078.CrossRefGoogle Scholar
Pasco, S. and Goldberg, J. (2014). Review of harvest incentives to control invasive species. Management of Biological Invasions, 5, 263277.CrossRefGoogle Scholar
Paterson, R.A., Dick, J.T., Pritchard, D.W., et al. (2015). Predicting invasive species impacts: a community module functional response approach reveals context dependencies. Journal of Animal Ecology, 84, 453463.CrossRefGoogle ScholarPubMed
Pienkowski, T., Williams, S., McLaren, K., Wilson, B. and Hockley, N. (2015). Alien invasions and livelihoods: Economic benefits of invasive Australian Red Claw crayfish in Jamaica. Ecological Economics, 112, 6877.CrossRefGoogle Scholar
Pintor, L.M. and Sih, A. (2008). Differences in growth and foraging behavior of native and introduced populations of an invasive crayfish. Biological Invasions, 11, 18951902.CrossRefGoogle Scholar
Purcell, J.E., Shiganova, T.A., Decker, M.B. and Houde, E.D. (2001). The ctenophore Mnemiopsis in native and exotic habitats: US estuaries versus the Black Sea basin. Hydrobiologia, 451, 145176.CrossRefGoogle Scholar
Ray, W.J. and Corkum, L.D. (1997). Predation of zebra mussels by round gobies, Neogobius melanostomus. Environmental Biology of Fishes, 50, 267273.CrossRefGoogle Scholar
Ricciardi, A. (2001). Facilitative interactions among aquatic invaders: is an ‘invasional meltdown’ occurring in the Great Lakes? Canadian Journal of Fisheries and Aquatic Sciences, 58, 25132525.CrossRefGoogle Scholar
Richman, S.E. and Loworn, J.R. (2004). Relative foraging value to lesser scaup ducks of native and exotic clams from San Francisco Bay. Ecological Applications, 14, 12171231.CrossRefGoogle Scholar
Rossong, M.A., Williams, P.J., Coneau, M., Mitchell, S.C. and Apaloo, J. (2006). Agonistic interactions between the invasive green crab, Carcinus maenas (Linnaeus) and juvenile American lobster Homarus americanus (Milne Edwards). Journal of Experimental Marine Biology and Ecology, 329, 281288.CrossRefGoogle Scholar
Rothhaupt, K.-O., Hanselmann, A.J. and Yohannes, E. (2014). Niche differentiation between sympatric alien aquatic crustaceans: an isotopic evidence. Basic and Applied Ecology, 15, 453463.CrossRefGoogle Scholar
Roudez, R., Glover, T. and Weis, J.S. (2008). Learning in an invasive and a native predatory crab. Biological Invasions, 10, 11911196.CrossRefGoogle Scholar
Sanderson, B.L., Barnas, K.A. and Rub, A.W. (2009). Nonindigenous species of the Pacific Northwest: an overlooked risk to endangered salmon? Bioscience, 59, 245256.CrossRefGoogle Scholar
Sax, D. and Gaines, S. (2008). Species invasions and extinction: the future of native biodiversity on islands. Proceedings of the National Academy of Sciences, 105, 1149011497.CrossRefGoogle ScholarPubMed
Seiler, S.M. and Keeley, E.R. (2007). Morphological and swimming stamina differences between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri), rainbow trout (Oncorhynchus mykiss), and their hybrids. Canadian Journal of Fisheries and Aquatic Sciences, 64, 127135.CrossRefGoogle Scholar
Shiganova, T.A., Bulgakova, Y.V., Volovik, S.P., Mirzoyan, Z.A. and Dudkin, S.L. (2001). The new invader Beroe ovata Mayer 1912 and its effect on the ecosystem in the northeastern Black Sea. Hydrobiologia, 451, 187197.CrossRefGoogle Scholar
Somaweera, R., Webb, J.K., Brown, G.P. and Shine, R. (2011). Hatchling Australian freshwater crocodiles rapidly learn to avoid toxic invasive cane toads. Behaviour, 148, 501517.Google Scholar
Steinhart, G., Marschall, E.A. and Stein, R.A. (2004). Round goby predation on smallmouth bass offspring in nests during simulated catch-and-release angling. Transactions of the American Fisheries Society, 133, 121131.CrossRefGoogle Scholar
Strong, D.R. (1992). Are trophic cascades all wet? Differentiation and donor control in a speciose system. Ecology, 73, 747754.CrossRefGoogle Scholar
Ward-Fear, G., Brown, G.P., Greenlees, M.J. and Shine, R. (2009). Maladaptive traits in invasive species: in Australia, cane toads are more vulnerable to predatory ants than are native frogs. Functional Ecology 23:559568.CrossRefGoogle Scholar
Warner, R. (2015). Green crabs are multiplying. Should we eat the enemy? Boston Globe, 12 February. Available at: http://www.bostonglobe.com/magazine/2015/02/12/the-green-crab-problem-shall-eat-enemy/Ahtg6L87Gpxs0RMKntYAoN/story.html, accessed 19 April 2016.Google Scholar
Webb, J.K., Brown, G.P., Child, T., et al. (2008). A native dasyurid predator (common planigale, Planigale maculata) rapidly learns to avoid a toxic invader. Austral Ecology, 33, 821829.CrossRefGoogle Scholar
Weis, J.S., Smith, G. and Santiago-Bass, C. (2000). Predator/prey interactions: a link between the individual level and both higher and lower level effects of toxicants in aquatic systems. Journal of Aquatic Ecosystem Stress and Recovery, 7, 145153.CrossRefGoogle Scholar
Winslow, C. (2010). Competitive interactions between young-of-the-year smallmouth bass (Micropterus dolomieu) and round goby (Apollonia melanostomus). PhD dissertation. Columbus, OH: Ohio State University 85 pp.Google Scholar
Young, K.A., Dunham, J.B., Stephenson, J.F., et al. (2010). A trial of two trouts: comparing the impacts of rainbow and brown trout on a native galaxiid. Animal Conservation, 13, 399410.CrossRefGoogle Scholar

References

Albins, M.A. and Hixon, M.A. (2008). Invasive Indo-Pacific lionfish (Pterois volitans) reduce recruitment of Atlantic coral-reef fishes. Marine Ecology Progress Series, 367(1), 233238.CrossRefGoogle Scholar
Blackburn, T.M., Cassey, P., Duncan, R.P., Evans, K.L. and Gaston, K.J. (2004). Avian extinction and mammalian introductions on oceanic islands. Science, 305(5692), 19551958.CrossRefGoogle ScholarPubMed
Blossey, B. and Notzold, R. (1995). Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis Journal of Ecology, 83(5), 887889.CrossRefGoogle Scholar
Braby, C.E. and Somero, G.N. (2006). Ecological gradients and relative abundance of native (Mytilus trossulus) and invasive (Mytilus galloprovincialis) blue mussels in the California hybrid zone. Marine Biology, 148(6), 12491262.CrossRefGoogle Scholar
Bryant, M.E. and Arnold, J.D. (2007). Diets of age-0 striped bass in the San Francisco Estuary, 1973–(2002). California Fish and Game, 93(1), 122.Google Scholar
Buhle, E.R. and Ruesink, J.L. (2009). Impacts of invasive oyster drills on Olympia oyster (Ostrea lurida Carpenter 1864) recovery in Willapa Bay, Washington, United States. Journal of Shellfish Research, 28(1), 8796.CrossRefGoogle Scholar
Callaway, R.M. and Ridenour, W.M. (2004). Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2(8), 436443.CrossRefGoogle Scholar
Carlton, J.T. (1992). Introduced marine and estuarine mollusks of North America: An end-of-the-20th-century perspective. Journal of Shellfish Research, 11(2), 489505.Google Scholar
Carthey, A.J.R. and Banks, P.B. (2014). Naïveté in novel ecological interactions: lessons from theory and experimental evidence. Biological Reviews, 89(4), 932949.CrossRefGoogle ScholarPubMed
Chapin, F.S., Zavaleta, E.S., Eviner, V.T., et al. (2000). Consequences of changing biodiversity. Nature, 405(6783), 234242.CrossRefGoogle ScholarPubMed
Cheng, B. and Hovel, K. (2010). Biotic resistance to invasion along an estuarine gradient. Oecologia, 164(4), 10491059.CrossRefGoogle ScholarPubMed
Clarke, K. and Gorley, R. (2015). PRIMER v7: User Manual/Tutorial. Plymouth, UK: PRIMER-E.Google Scholar
Cox, J.G. and Lima, S.L. (2006). Naïveté and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends in Ecology and Evolution, 21(12), 674680.CrossRefGoogle Scholar
Crawley, M.J. (1987). What makes a community invasible? In Colonization, Succession, and Stability: the 26th Symposium of the British Ecological Society held jointly with the Linnean Society of London, ed. Gray, A.J., Crawley, M.J. and Edwards, P.J. Boston, UK: Blackwell Scientific Publications, pp. 429453.Google Scholar
Crooks, J.A. (2005). Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience, 12(3), 316329.CrossRefGoogle Scholar
Darwin, C. (1872). On the Origin of Species. London: John Murray.Google Scholar
de Rivera, C.E., Ruiz, G.M., Hines, A.H. and Jivoff, P. (2005). Biotic resistance to invasion: native predator limits abundance and distribution of an introduced crab. Ecology, 86(12), 33643376.CrossRefGoogle Scholar
Elton, C.S. (1958). The Ecology of Invasions by Animals and Plants. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Emlen, J.M. (1966). Role of time and energy in food preference. American Naturalist, 100(916), 611617.CrossRefGoogle Scholar
Ferrari, M.C.O., Gonzalo, A., Messier, F. and Chivers, D.P. (2007). Generalization of learned predator recognition: an experimental test and framework for future studies. Proceedings of the Royal Society B: Biological Sciences, 274(1620), 18531859.CrossRefGoogle ScholarPubMed
Ferrari, M.C.O., Messier, F., Chivers, D.P. and Messier, O. (2008). Can prey exhibit threat-sensitive generalization of predator recognition? Extending the predator recognition continuum hypothesis. Proceedings of the Royal Society B: Biological Sciences, 275(1644), 18111816.CrossRefGoogle ScholarPubMed
Freeman, A.S. and Byers, J.E. (2006). Divergent induced responses to an invasive predator in marine mussel populations. Science, 313(5788), 831833.CrossRefGoogle Scholar
Freeman, A.S., Dernbach, E., Marcos, C. and Koob, E. (2014). Biogeographic contrast of Nucella lapillus responses to Carcinus maenas. Journal of Experimental Marine Biology and Ecology, 452, 18.CrossRefGoogle Scholar
Fritts, T.H. and Rodda, G.H. (1998). The role of introduced species in the degradation of island ecosystems: a case history of Guam. Annual Review of Ecology and Systematics, 29, 113140.CrossRefGoogle Scholar
Grabowski, J.H. and Kimbro, D.L. (2005). Predator-avoidance behavior extends trophic cascades to refuge habitats. Ecology, 86(5), 13121319.CrossRefGoogle Scholar
Grosholz, E.D. and Ruiz, G.M. (2003). Biological invasions drive size increases in marine and estuarine invertebrates. Ecology Letters, 6(8), 700705.CrossRefGoogle Scholar
Grosholz, E.D. (2005). Recent biological invasion may hasten invasional meltdown by accelerating historical introductions. Proceedings of the National Academy of Sciences, USA, 102(4), 10881091.CrossRefGoogle ScholarPubMed
Hastings, A., Cuddington, K., Davies, K.F., et al. (2005). The spatial spread of invasions: new developments in theory and evidence. Ecology Letters, 8(1), 91101.CrossRefGoogle Scholar
Hays, W.S.T. and Conant, S. (2007). Biology and impacts of Pacific Island invasive species. 1. A worldwide review of effects of the small Indian mongoose, Herpestes javanicus (Carnivora: Herpestidae). Pacific Science, 61(1), 316.CrossRefGoogle Scholar
Hearn, C.J. and Largier, J.L. (1997). The summer buoyancy dynamics of a shallow Mediterranean estuary and some effects of changing bathymetry: Tomales bay, California. Estuarine Coastal and Shelf Science, 45(4), 497506.CrossRefGoogle Scholar
Hierro, J.L., Maron, J.L. and Callaway, R.M. (2005). A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology, 93(1), 515.CrossRefGoogle Scholar
Jeschke, J.M. and Strayer, D.L. (2005). Invasion success of vertebrates in Europe and North America. Proceedings of the National Academy of Sciences, USA, 102(20), 71987202.CrossRefGoogle ScholarPubMed
Joshi, J. and Vrieling, K. (2005). The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecology Letters, 8(7), 704714.CrossRefGoogle Scholar
Keane, R.M. and Crawley, M.J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution, 17(4), 164170.CrossRefGoogle Scholar
Kimbro, D.L., Largier, J. and Grosholz, E.D. (2009). Coastal oceanographic processes influence the growth and size of a key estuarine species, the Olympia oyster. Limnology and Oceanography, 54(5), 14251437.CrossRefGoogle Scholar
Kimbro, D.L., Cheng, B.S. and Grosholz, E.D. (2013). Biotic resistance in marine environments. Ecology Letters, 16(6), 821833.CrossRefGoogle ScholarPubMed
Knapp, R.A. and Matthews, K.R. (2000). Non-native fish introductions and the decline of the mountain yellow-legged frog from within protected areas. Conservation Biology, 14(2), 428438.CrossRefGoogle Scholar
Kumar, A.S. and Bais, H.P. (2010). Allelopathy and exotic plant invasion. In Plant Communication from an Ecological Perspective, ed. Baluška, F. and Ninkovic, V. Berlin: Springer, pp. 6174.CrossRefGoogle Scholar
Kushner, R.B. and Hovel, K.A. (2006). Effects of native predators and eelgrass habitat structure on the introduced Asian mussel Musculista senhousia (Benson in Cantor) in southern California. Journal of Experimental Marine Biology and Ecology, 332(2), 166177.CrossRefGoogle Scholar
Lawler, S.P., Dritz, D., Strange, T. and Holyoak, M. (1999). Effects of introduced mosquitofish and bullfrogs on the threatened California red‐legged frog. Conservation Biology, 13(3), 613622.CrossRefGoogle Scholar
Levine, J.M., Adler, P.B. and Yelenik, S.G. (2004). A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters, 7(10), 975989.CrossRefGoogle Scholar
Lodge, D.M. (1993). Biological invasions: lessons for ecology. Trends in Ecology and Evolution, 8(4), 133137.CrossRefGoogle ScholarPubMed
Lodge, D.M., Williams, S., MacIsaac, H.J., et al. (2006). Biological invasions: recommendations for US policy and management. Ecological Applications, 16(6), 20352054.CrossRefGoogle ScholarPubMed
Louda, S.M., Pemberton, R.W., Johnson, M.T. and Follett, P. (2003). Nontarget effects – the Achilles' heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annual Review of Entomology, 48(1), 365396.CrossRefGoogle ScholarPubMed
MacArthur, R.H. and Pianka, E.R. (1966). On optimal use of a patchy environment. American Naturalist, 100(916), 603609.CrossRefGoogle Scholar
Mack, R.N., Simberloff, D., Lonsdale, W., Evans, H., Clout, M. and Bazzaz, F.A. (2000). Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications, 10(3), 689710.CrossRefGoogle Scholar
Maron, J.L. and Vilà, M. (2001). When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos, 95(3), 361373.CrossRefGoogle Scholar
McMahon, K., Conboy, A., O'Byrne-White, E., Thomas, R.J. and Marples, N.M. (2014). Dietary wariness influences the response of foraging birds to competitors. Animal Behavior, 89, 6369.CrossRefGoogle Scholar
McWilliam, R.A., Minchinton, T.E. and Ayre, D.J. (2013). Despite prolonged association in closed populations, an intertidal predator does not prefer abundant local prey to novel prey. Biological Journal of the Linnean Society, 108(4), 812820.CrossRefGoogle Scholar
Mitchell, C.E. and Power, A.G. (2003). Release of invasive plants from fungal and viral pathogens. Nature, 421(6923), 625627.CrossRefGoogle ScholarPubMed
Müller-Schärer, H., Schaffner, U. and Steinger, T. (2004). Evolution in invasive plants: implications for biological control. Trends in Ecology and Evolution, 19(8), 417422.CrossRefGoogle ScholarPubMed
Ogutuohwayo, R. (1990). The decline of the native fishes of Lakes Victoria and Kyoga (East-Africa) and the impact of introduced species, especially the Nile Perch, Lates niloticus, and the Nile Tilapia, Oreochromis niloticus. Environmental Biology of Fishes, 27(2), 8196.CrossRefGoogle Scholar
Parker, J.D., Burkepile, D.E. and Hay, M.E. (2006). Opposing effects of native and exotic herbivores on plant invasions. Science, 311(5766), 14591461.CrossRefGoogle ScholarPubMed
Pearse, I.S. and Hipp, A.L. (2009). Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proceedings of the National Academy of Sciences, USA, 106(43), 1809718102.CrossRefGoogle ScholarPubMed
Perry, D.M. (1987). Optimal diet theory: behavior of a starved predatory snail. Oecologia, 72(3), 360365.CrossRefGoogle ScholarPubMed
Phillips, B.L. and Shine, R. (2004). Adapting to an invasive species: toxic cane toads induced morphological change in Australian snakes. Proceedings of the National Academy of Sciences, USA, 101(49), 1715017155.CrossRefGoogle Scholar
Pierce, G.J. and Ollason, J.G. (1987). Eight reasons why optimal foraging theory is a complete waste of time. Oikos, 49(1), 111118.CrossRefGoogle Scholar
Pimentel, D., Zuniga, R. and Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52(3), 273288.CrossRefGoogle Scholar
Pyke, G.H., Pulliam, H.R. and Charnov, E.L. (1977). Optimal foraging: selective review of theory and tests. Quarterly Review of Biology, 52(2), 137154.CrossRefGoogle Scholar
Reusch, T.B.H. (1998). Native predators contribute to invasion resistance to the non-indigenous bivalve Musculista senhousia in southern California, USA. Marine Ecology Progress Series, 170, 159168.CrossRefGoogle Scholar
Ricciardi, A. and Mottiar, M. (2006). Does Darwin's naturalization hypothesis explain fish invasions? Biological Invasions, 8(6), 14031407.CrossRefGoogle Scholar
Rittschof, D., Kieber, D. and Merrill, C. (1984). Modification of responses of newly hatched snails by exposure to odors during development. Chemical Senses, 9(3), 181192.CrossRefGoogle Scholar
Robbins, T.R., Freidenfelds, N.A. and Langkilde, T. (2013). Native predator eats invasive toxic prey: evidence for increased incidence of consumption rather than aversion-learning. Biological Invasions, 15(2), 407415.CrossRefGoogle Scholar
Salo, P., Korpomaki, E., Banks, P.B., Nordstrom, M. and Dickman, C.R. (2007). Alien predators are more dangerous than native predators to prey populations. Proceedings of the Royal Society B: Biological Sciences, 274(1615), 12371243.CrossRefGoogle ScholarPubMed
Sih, A., Bolnick, D.I., Luttbeg, B., et al. (2010). Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos, 119(4), 610621.CrossRefGoogle Scholar
Sih, A. and Christensen, B. (2001). Optimal diet theory: when does it work, and when and why does it fail? Animal Behavior, 61, 379390.CrossRefGoogle Scholar
Simberloff, D. and Stiling, P. (1996). How risky is biological control? Ecology, 77(7), 19651974.CrossRefGoogle Scholar
Simberloff, D., Dayan, T., Jones, C. and Ogura, G. (2000). Character displacement and release in the small Indian mongoose, Herpestes javanicus. Ecology 81(8): 20862099.CrossRefGoogle Scholar
Smith, L.D. (2004). Biogeographic differences in claw size and performance in an introduced crab predator Carcinus maenas. Marine Ecology Progress Series, 276, 209222.CrossRefGoogle Scholar
Stiling, P. and Cornelissen, T. (2005). What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biological Control, 34(3), 236246.CrossRefGoogle Scholar
Suboski, M.D. (1992). Releaser-induced recognition learning by gastropod mollusks. Behavioral Processes, 27(1), 126.CrossRefGoogle Scholar
Torchin, M.E. and Mitchell, C.E. (2004). Parasites, pathogens, and invasions by plants and animals. Frontiers in Ecology and the Environment, 2(4), 183190.CrossRefGoogle Scholar
Torchin, M.E., Lafferty, K.D., Dobson, A.P., McKenzie, V.J. and Kuris, A.M. (2003). Introduced species and their missing parasites. Nature, 421(6923), 628630.CrossRefGoogle ScholarPubMed
Trussell, G.C. (1996). Phenotypic plasticity in an intertidal snail: the role of a common crab predator. Evolution, 50(1), 448454.CrossRefGoogle Scholar
Trussell, G.C. and Nicklin, M.O. (2002). Cue sensitivity, inducible defense, and trade-offs in a marine snail. Ecology, 83(6), 16351647.CrossRefGoogle Scholar
Turner, A.M. (2008). Predator diet and prey behavior: freshwater snails discriminate among closely related prey in a predator's diet. Animal Behavior, 76, 12111217.CrossRefGoogle Scholar
Verhoeven, K.J.F., Biere, A., Harvey, J.A. and van der Putten, W.H. (2009). Plant invaders and their novel natural enemies: who is naive? Ecology Letters, 12(2), 107117.CrossRefGoogle ScholarPubMed
Webb, J.K., Brown, G.P., Child, T., et al. (2008). A native dasyurid predator (common planigale, Planigale maculata) rapidly learns to avoid a toxic invader. Austral Ecology, 33(7), 821829.CrossRefGoogle Scholar
Wells, E.H. (2013). Evolutionary novelty and naïveté in invertebrate predator-prey interactions in a benthic marine community. PhD dissertation. Davis, CA: University of California.Google Scholar
Weissburg, M., Smee, D.L. and Ferner, M.C. (2014). The sensory ecology of nonconsumptive predator effects. American Naturalist, 184(2), 141157.CrossRefGoogle ScholarPubMed
Werner, E.E. and Hall, D.J. (1974). Optimal foraging and size selection of prey by bluegill sunfish (Lepomis macrochirus). Ecology, 55(5), 10421052.CrossRefGoogle Scholar
Williamson, M. and Fitter, A. (1996). The varying success of invaders. Ecology, 77(6), 16611666.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×