Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-15T19:28:55.718Z Has data issue: false hasContentIssue false

6 - Immunobiology of the oligodendrocyte

Published online by Cambridge University Press:  05 August 2012

Patricia Armati
Affiliation:
University of Sydney
Emily Mathey
Affiliation:
University of Sydney
Get access

Summary

INTRODUCTION

Oligodendrocytes, as the myelin-producing cells of the central nervous system (CNS), are exactly what their Greek-derived name “oligodendroglia” suggests: they, alongside astrocytes, the non-neural microglia and ependymal cells, have been characterized as the “glue” that holds together the intricate apparatus of our brain. The fact that oligodendrocyte and astrocyte cells outnumber neurons by ten to one illustrates their importance, which is particularly highlighted by the oligodendrocyte's role in accelerating transmission of axonal action potentials. On the other hand, oligodendrocytes are involved in a number of serious diseases of viral, metabolic and immunological origin. This chapter tries to shed light on the immunobiological properties of oligodendroglial cells in the healthy and diseased CNS. We will begin with an overview of diseases featuring oligodendrocyte/immune system interactions and will then, in the second part, focus on the molecular repertoire that allows these cells to interact directly or indirectly with immune cells. Subsequently, we will discuss oligodendrocytes as antigen-presenting cells and finally we will present data on direct oligodendroglial/immune cell interactions.

IMMUNE-MEDIATED DISEASES AFFECTING OLIGODENDROCYTES

Multiple sclerosis

Multiple sclerosis (MS), which was first described by the French neurologist Jean-Martin Charcot in 1868 (Charcot, 1868), is a chronic inflammatory disease of the CNS of unknown etiology (Hemmer et al., 2006). Although an ideal system for the classification of different MS stages does not yet exist (Van der Valk and De Groot, 2000) there is broad consensus that loss of myelin due to oligodendrocyte damage or death together with axonal degeneration leading to reactive glial scar formation are the key hallmarks of this disease (Trapp and Nave, 2008).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×