Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-16T02:33:41.668Z Has data issue: false hasContentIssue false

6 - Physiological ecology

Published online by Cambridge University Press:  06 July 2010

Bernard Goffinet
Affiliation:
University of Connecticut
A. Jonathan Shaw
Affiliation:
Duke University, North Carolina
Get access

Summary

Introduction

Bryophytes are on average some two orders of magnitude smaller than vascular plants, and this difference of scale brings in its train major differences in physiology, just as many of the differences in the structural organization and physiology of insects and vertebrates are similarly scale-driven. Surface area varies as the square, and volume and mass as the cube, of linear dimensions. Hence gravity is a major limiting factor for vertebrates or trees, but trivial for insects or bryophytes. Bryophytes in general have much larger areas for evaporation in proportion to plant mass than do vascular plants. Surface tension, which operates at linear interfaces, is of little significance at the scale of the vascular plant shoot but is a powerful force at the scale of many bryophyte structures. There are also major scale-related differences in the relation of bryophytes and vascular plants to their atmospheric environment. Vascular-plant leaves are typically deployed in the turbulent air well above the ground. The diffusion resistance of the thin laminar boundary layer is small, so the epidermis with its cuticle and stomata in effect marks the boundary between (relatively slow) diffusive mass transfer within the leaf and (much faster) turbulent mixing in the surrounding air. By contrast the small leaves of many bryophytes lie largely or wholly within the laminar boundary layer of the bryophyte carpet or cushion, or of the substratum on which it grows.

Type
Chapter
Information
Bryophyte Biology , pp. 237 - 268
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, W. O. (1956). Die Austrocknungsresistenz der Laubmoose. Sitzungsberichte. Österreichische Akademie der Wissenschaften. Mathematische-Naturwissenschaftliche Klasse Abt. 1, 165, 619–707.Google Scholar
Alpert, P. (2000). The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecology, 151, 5–17.CrossRefGoogle Scholar
Alpert, P. (2005). The limits and frontiers of desiccation-tolerant life. Integrative and Comparative Biology, 45, 685–95.CrossRefGoogle ScholarPubMed
Alpert, P. & Oliver, M. J. (2002). Drying without dying. In Desiccation and Survival in Plants: Drying Without Dying, ed. Black, M. & Pritchard, H. W., pp. 3–43. Wallingford: CABI Publishing.CrossRefGoogle Scholar
Alscher, R. G., Donahue, J. L. & Cramer, C. A. (1997). Reactive oxygen species and antioxidants: relationships in green cells. Physiologia Plantarum 100, 224–33.CrossRefGoogle Scholar
Anderson, J. M., Park, Y.-L. & Chow, W. S. (1997). Photoinactivation and photoprotection of photosystem II in nature. Physiologia Plantarum, 100, 214–23.CrossRefGoogle Scholar
Asada, K. (1999). The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601–39.CrossRefGoogle ScholarPubMed
Bates, J. W. (1998). Is ‘life-form’ a useful concept in bryophyte ecology?Oikos, 82, 223–37.CrossRefGoogle Scholar
Bates, J. W. & Farmer, A. M. (1992). Bryophytes and Lichens in a Changing Environment. Oxford: Clarendon Press.Google Scholar
Beckett, R. P. (1996). Pressure volume analysis of a range of poikilohydric plants implies the existence of negative turgor in vegetative cells. Annals of Botany, 79, 145–52.CrossRefGoogle Scholar
Bewley, J. D. & Krochko, J. E. (1982). Desiccation-tolerance. In Encyclopaedia of Plant Physiology, New Series, vol. 12B, ed. Lange, O. L., Nobel, P. S., Osmond, C. B. & Ziegler, H., pp. 325–78. Berlin: Springer-Verlag.Google Scholar
Björkman, O. & Demmig-Adams, B. (1995). Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plants. In Ecophysiology of Photosynthesis, ed. Schulze, E.-D. & Caldwell, M. M., pp. 17–47. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Bopp, M. & Werner, O. (1993). Abscisic acid and desiccation tolerance in mosses. Botanica Acta, 106, 103–6.CrossRefGoogle Scholar
Brown, D. H. (1982). Mineral nutrition. In Bryophyte Ecology, ed. Smith, A. J. E., pp. 383–444. London: Chapman & Hall.CrossRefGoogle Scholar
Brown, D. H. (1984). Uptake of mineral elements and their use in pollution monitoring. In The Experimental Biology of Bryophytes, ed. Dyer, A. F. & Duckett, J. G.. London: Academic Press.Google Scholar
Brown, D. H. & Bates, J. W. (1990). Bryophytes and nutrient cycling. Botanical Journal of the Linnean Society, 104, 129–47.CrossRefGoogle Scholar
Buch, H. (1945). Über die Wasser- und Mineralstoffversorgung der Moose. Part 1. Commentationes Biologici Societas Scientiarum Fennicae, 9(16), 1–44.Google Scholar
Buch, H. (1947). Über die Wasser- und Mineralstoffversorgung der Moose. Part 2. Commentationes Biologici Societas Scientiarum Fennicae, 9(20), 1–61.Google Scholar
Buitink, J., Hoekstra, F. A. & Leprince, O. (2002). Biochemistry and biophysics of tolerance systems. In Desiccation and Survival in Plants: Drying Without Dying, ed. Black, M. & Pritchard, H. W., pp. 293–318. Wallingford: CABI Publishing.CrossRefGoogle Scholar
Clayton-Greene, K. A., Collins, N. J., Green, T. G. A. & Proctor, M. C. F. (1985). Surface wax, structure and function in leaves of Polytrichaceae. Journal of Bryology, 13, 549–62.CrossRefGoogle Scholar
Crowe, J. H., Carpenter, J. F. & Crowe, L. M. (1998). The role of vitrification in anhydrobiosis. Annual Review of Physiology, 60, 73–103.CrossRefGoogle ScholarPubMed
Csintalan, Zs., Proctor, M. C. F. & Tuba, Z. (1999). Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.) Warnst., Anomodon viticulosus (Hedw.) Hook. & Tayl. and Grimmia pulvinata (Hedw.) Sm. Annals of Botany, 84, 235–44.CrossRefGoogle Scholar
Deltoro, V. I., Calatayud, A., Gimeno, C., Abadia, A. & Barreno, E. (1998). Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts. Planta, 207, 224–8.CrossRefGoogle Scholar
Dilks, T. J. K. & Proctor, M. C. F. (1974). The pattern of recovery of bryophytes after desiccation. Journal of Bryology, 8, 97–115.CrossRefGoogle Scholar
Dilks, T. J. K. & Proctor, M. C. F. (1976). Effects of intermittent desiccation on bryophytes. Journal of Bryology, 9, 249–64.CrossRefGoogle Scholar
Dilks, T. J. K. & Proctor, M. C. F. (1979). Photosynthesis, respiration, and water content in bryophytes. New Phytologist, 82, 97–114.CrossRefGoogle Scholar
Edwards, D., Wellman, C. H. & Axe, L. (1998). The fossil record of early land plants and interrelationships between primitive embryophytes: too little and too late? In Bryology for the Twenty-First Century, ed. Bates, J. W., Ashton, N. W. & Duckett, J. G., pp. 15–43. Leeds: Maney Publishing and British Bryological Society.Google Scholar
Egle, K. (1960). Menge und Verhältnis der Pigmente. In Encyclopaedia of Plant Physiology, vol. 5, ed. Ruhland, W., pp. 444–96. Berlin: Springer-Verlag.Google Scholar
Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. (1989). Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503–37.CrossRef
Foyer, C. H., Lelandais, M. & Kunert, K. J. (1994). Photooxidative stress in plants. Physiologia Plantarum, 92, 696–717.CrossRefGoogle Scholar
Frahm, J.-P. (1990). Bryophyte phytomass in tropical ecosystems. Botanical Journal of the Linnean Society, 104, 23–33.CrossRefGoogle Scholar
Gilmore, A. M. (1997). Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiologia Plantarum, 99, 197–209.CrossRefGoogle Scholar
Gimingham, C. H. & Birse, E. M. (1957). Ecological studies on growth-form in bryophytes. I. Correlations between growth-form and habitat. Journal of Ecology, 45, 533–45.CrossRefGoogle Scholar
Goffinet, B. (2000). Origin and phyletic relationships of bryophytes. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 124–49. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gwózdz, E. A., Bewley, J. D. & Tucker, E. B. (1974). Studies on protein synthesis in Tortula ruralis: polyribosome formation following desiccation. Journal of Experimental Botany, 25, 599–608.CrossRefGoogle Scholar
Hanson, D., Andrews, T. J. & Badger, M. R. (2002). Variability of the pyrenoid-based CO2 concentrating mechanism in hornworts (Anthocerotophyta). Functional Plant Biology, 29, 407–16.CrossRefGoogle Scholar
Hearnshaw, G. F. & Proctor, M. C. F. (1982). The effect of temperature on the survival of dry bryophytes. New Phytologist, 90, 221–8.CrossRefGoogle Scholar
Heber, U., Lange, O. L. & Shuvalov, V. A. (2006). Conservation and dissipation of light energy as complementary processes: homoiohydric and poikilohydric autotrophs. Journal of Experimental Botany, 57, 121–3.CrossRefGoogle ScholarPubMed
Hellewege, E. M., Dietz, K. J., Volk, O. H. & Hartung, W. (1994). Abscisic acid and the induction of desiccation tolerance in the extremely xerophilic liverwort Exormotheca holstii. Planta, 194, 525–31.CrossRefGoogle Scholar
Hinshiri, H. N. & Proctor, M. C. F. (1971). The effect of desiccation on subsequent assimilation of the bryophytes Anomodon viticulosus and Porella platyphylla. New Phytologist, 70, 527–38.CrossRefGoogle Scholar
Horton, P., Ruban, A. V. & Walters, R. G. (1996). Regulation of light harvesting in green plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 655–84.CrossRefGoogle ScholarPubMed
Jarvis, P. G. & McNaughton, K. G. (1986). Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research, 15, 1–49.CrossRefGoogle Scholar
Jones, H. G. (1992). Plants and Microclimate, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Kaiser, W. M. (1987). Effects of water deficit on photosynthetic capacity. Physiologia Plantarum, 71, 142–9.CrossRefGoogle Scholar
Kappen, L. & Valladares, F. (1999). Opportunistic growth and desiccation tolerance: the ecological success of poikilohydrous autotrophs. In Handbook of Functional Plant Ecology, ed. Pugnaire, F. I. & Valladares, F., pp. 9–80. New York and Basel: Marcel Dekker.Google Scholar
Kershaw, K. A. & Webber, M. R. (1986). Seasonal changes in the chlorophyll content and quantum efficiency of the moss Brachythecium rutabulum. Journal of Bryology, 14, 151–8.CrossRefGoogle Scholar
Krause, G. H. & Weis, E. (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 313–49.CrossRefGoogle Scholar
Lackner, L. (1939). Über die Jahresperiodizität in der Entwicklung der Laubmoose. Planta, 29, 534–616.CrossRefGoogle Scholar
Larcher, W. (1995). Physiological Plant Ecology, 3rd edn. New York: Springer-Verlag.CrossRefGoogle Scholar
León-Vargas, Y., Engwald, S. & Proctor, M. C. F. (2006). Microclimate, light adaptation and desiccation tolerance of epiphytic bryophytes in two Venezuelan cloud forests. Journal of Biogeography, 33, 901–13.CrossRefGoogle Scholar
Liu, Y., Li, Z., Cao, T. & Glime, J. M. (2004). The influence of high temperature on cell damage and shoot survival rates of Plagiomnium acutum. Journal of Bryology, 26, 265–71.CrossRefGoogle Scholar
Logan, B. A. (2005). Reactive oxygen species and photosynthesis. In Antioxidants and Reactive Oxygen Species in Plants, ed. Smirnoff, N., pp. 250–67. Oxford: Blackwell Publishing.Google Scholar
Longton, R. E. (1981). Physiological ecology of mosses. In The Mosses of North America, ed. Taylor, R. J. & Leviton, S. E., pp. 77–113. Washington, D.C.: Pacific Division, American Academy of Science.Google Scholar
Longton, R. E. (1988). The Biology of Polar Bryophytes and Lichens. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mägdefrau, K. (1982). Life-forms of bryophytes. In Bryophyte Ecology, ed. Smith, A. J. E., pp. 45–58. London: Chapman & Hall.CrossRefGoogle Scholar
Mansour, K. S. & Hallet, J. N. (1981). Effect of desiccation on DNA synthesis and the cell cycle of the moss Polytrichum formosum. New Phytologist, 87, 315–24.CrossRefGoogle Scholar
Martin, C. E. & Churchill, S. P. (1982). Chlorophyll concentrations and a/b ratios in mosses collected from exposed and shaded habitats in Kansas. Journal of Bryology, 12, 297–304.CrossRefGoogle Scholar
Marschall, M. & Proctor, M. C. F. (1999). Desiccation tolerance and recovery of the leafy liverwort Porella platyphylla (L.) Pfeiff.: chlorophyll-fluorescence measurements. Journal of Bryology, 21, 257–62.CrossRefGoogle Scholar
Marschall, M. & Proctor, M. C. F. (2004). Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Annals of Botany, 94, 593–603.CrossRefGoogle ScholarPubMed
Maxwell, K. & Johnson, G. N. (2000). Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany, 51, 659–68.CrossRefGoogle ScholarPubMed
Nobel, P. S. (1977). Internal leaf area and cellular CO2 resistance: photosynthetic implications of variations with growth conditions and plant species. Physiologia Plantarum, 40, 137–44.CrossRefGoogle Scholar
Oliver, M. J. (1991). Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis. Ramifications for a repair-based mechanism of desiccation tolerance. Plant Physiology, 97, 1501–11.CrossRefGoogle ScholarPubMed
Oliver, M. J. (1996). Desiccation tolerance in vegetative plant cells. Physiologia Plantarum, 97, 779–87.CrossRefGoogle Scholar
Oliver, M. J. & Bewley, J. D. (1997). Desiccation tolerance of plant tissues: a mechanistic overview. Horticultural Reviews, 18, 171–213.Google Scholar
Oliver, M. J., Tuba, Z. & Mishler, B. D. (2000). The evolution of vegetative desiccation tolerance in land plants. Plant Ecology, 151, 85–100.CrossRefGoogle Scholar
Oliver, M. J., Velten, J. & Mishler, B. D. (2005). Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats. Integrative and Comparative Biology, 45, 788–99.CrossRefGoogle ScholarPubMed
Pitkin, P. H. (1975). Variability and seasonality of the growth of some corticolous pleurocarpous mosses. Journal of Bryology, 8, 337–56.CrossRefGoogle Scholar
Pressel, S. (2006). Experimental studies of bryophyte cell biology, conservation, physiology and systematics. Ph.D. Thesis, University of London.
Pressel, S., Ligrone, R. & Duckett, J. G. (2006). Effects of de- and rehydration on food-conducting cells in the moss Polytrichum formosum: a cytological study. Annals of Botany, 98, 67–76.CrossRefGoogle Scholar
Price, G. D., McKenzie, J. E., Pilcher, J. R. & Hoper, S. T. (1997). Carbon-isotope variation in Sphagnum from hummock-hollow complexes: implications for Holocene climate reconstruction. The Holocene, 7, 229–33.CrossRefGoogle Scholar
Proctor, M. C. F. (1979a). Structure and eco-physiological adaptation in bryophytes. In Bryophyte Systematics, ed. Clarke, G. C. S. & Duckett, J. G., pp. 479–509. London: Academic Press.Google Scholar
Proctor, M. C. F. (1979b). Surface wax on the leaves of some mosses. Journal of Bryology, 10, 531–8.CrossRefGoogle Scholar
Proctor, M. C. F. (1981a). Physiological ecology of bryophytes. Advances in Bryology, 1, 79–166.Google Scholar
Proctor, M. C. F. (1981b). Diffusion resistances in bryophytes. In Plants and their Atmospheric Environment, ed. Grace, J., Ford, E. D. & Jarvis, P. G., pp. 219–29.
Proctor, M. C. F. (1982). Physiological ecology: water relations, light and temperature responses, carbon balance. In Bryophyte Ecology, ed. Smith, A. J. E., pp. 333–81. London: Chapman & Hall.CrossRefGoogle Scholar
Proctor, M. C. F. (1990). The physiological basis of bryophyte production. Botanical Journal of the Linnean Society, 104, 61–77.CrossRefGoogle Scholar
Proctor, M. C. F. (1992). Scanning electron microscopy of lamella-margin characters and the phytogeography of the genus Polytrichadelphus. Journal of Bryology, 17, 317–33.CrossRefGoogle Scholar
Proctor, M. C. F. (1999). Water-relations parameters of some bryophytes evaluated by thermocouple psychrometry. Journal of Bryology, 21, 263–70.CrossRefGoogle Scholar
Proctor, M. C. F. (2000). The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecology, 151, 41–9.CrossRefGoogle Scholar
Proctor, M. C. F. (2001). Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regulation, 35, 147–56.CrossRefGoogle Scholar
Proctor, M. C. F. (2002). Ecophysiological measurements on two pendulous forest mosses from Uganda, Pilotrichella ampullacea and Floribundaria floribunda. Journal of Bryology, 24, 223–32.CrossRefGoogle Scholar
Proctor, M. C. F. (2003). Experiments on the effect of different intensities of desiccation on bryophyte survival, using chlorophyll fluorescence as an index of recovery. Journal of Bryology, 25, 215–24.CrossRefGoogle Scholar
Proctor, M. C. F. (2004a). How long must a desiccation-tolerant moss tolerate desiccation? Some results of two years' data-logging on Grimmia pulvinata. Physiologia Plantarum, 122, 21–7.CrossRefGoogle Scholar
Proctor, M. C. F. (2004b). Light and desiccation responses of Weymouthia mollis (Hedw.) Broth. and W. cochlearifolia (Schwägr.) Dix., two pendulous rainforest epiphytes from Australia and New Zealand. Journal of Bryology, 26, 167–73.CrossRefGoogle Scholar
Proctor, M. C. F. (2005). Why do Polytrichaceae have lamellae?Journal of Bryology, 27, 221–9.CrossRefGoogle Scholar
Proctor, M. C. F. & Pence, V. C. (2002). Vegetative tissues: bryophytes, vascular resurrection plants and vegetative propagules. In Desiccation and Survival in Plants: Drying Without Dying, ed. Black, M. & Pritchard, H. W., pp. 207–37. Wallingford: CABI Publishing.CrossRefGoogle Scholar
Proctor, M. C. F. & Smirnoff, N. (2000). Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. Journal of Experimental Botany, 51, 1695–704.CrossRefGoogle ScholarPubMed
Proctor, M. C. F. & Smith, A. J. E. (1995). Ecological and systematic implications of branching patterns in bryophytes. In Experimental and Molecular Approaches to Plant Biosystematics, ed. Hoch, P. C. & Stephenson, A. G., pp. 87–110. St. Louis, MO: Missouri Botanical Garden.Google Scholar
Proctor, M. C. F. & Tuba, Z. (2002). Poikilohydry and homoiohydry: antithesis or spectrum of possibilities?New Phytologist, 156, 327–49.CrossRefGoogle Scholar
Proctor, M. C. F., Raven, J. A. & Rice, S. K. (1992). Stable carbon isotope discrimination measurements in Sphagnum and other bryophytes: physiological and ecological implications. Journal of Bryology, 17, 193–202.CrossRefGoogle Scholar
Proctor, M. C. F., Nagy, Z., Csintalan, Zs. & Takács, Z. (1998). Water-content components in bryophytes: analysis of pressure–volume relationships. Journal of Experimental Botany, 49, 1845–54.CrossRefGoogle Scholar
Proctor, M. C. F., Duckett, J. G. & Ligrone, R. (2007a). Desiccation tolerance in the moss Polytrichum formosum Hedw.: physiological and fine-structural changes during desiccation and recovery. Annals of Botany, 99, 75–93.CrossRefGoogle Scholar
Proctor, M. C. F., Oliver, M. J., Wood, A. J.et al. (2007b). Desiccation-tolerance in bryophytes: a review. Bryologist, 110, 595–621.CrossRefGoogle Scholar
Raven, J. A. (1977). The evolution of land plants in relation to supracellular transport processes. Advances in Botanical Research, 5, 153–219.CrossRefGoogle Scholar
Raven, J. A. (1984). Physiological correlates of the morphology of early vascular plants. BotanicalJournal of the Linnean Society, 88, 105–26.CrossRefGoogle Scholar
Raven, J. A. (1995). The early evolution of land plants: aquatic ancestors and atmospheric interactions. Botanical Journal of Scotland, 47, 151–75.CrossRefGoogle Scholar
Raven, J. A., Macfarlane, J. J. & Griffiths, H. (1987). The application of carbon isotope discrimination techniques. In Plant Life in Aquatic and Amphibious Habitats, ed. Crawford, R. M. M., pp. 129–49. Oxford: Blackwell.Google Scholar
Rice, S. K. (2000). Variation in carbon isotope discrimination within and among Sphagnum species in a temperate wetland. Oecologia, 123, 1–8.CrossRefGoogle Scholar
Rice, S. K., Collins, D. & Anderson, A. M. (2001). Functional significance of variation in bryophyte canopy structure. American Journal of Botany, 88, 1568–76.CrossRefGoogle ScholarPubMed
Rice, S. K. & Giles, L. (1996). The influence of water content and leaf anatomy on carbon isotope discrimination and photosynthesis in Sphagnum. Plant, Cell and Environment, 19, 118–24.CrossRefGoogle Scholar
Rundel, P. W., Stichler, W., Zander, R. H. & Ziegler, H. (1979). Carbon and hydrogen isotope ratios of bryophytes from arid and humid regions. Oecologia, 4, 91–4.CrossRefGoogle Scholar
Russell, S. (1990). Bryophyte production and decomposition in tundra ecosystems. Botanical Journal of the Linnean Society, 104, 3–22.CrossRefGoogle Scholar
Schonbeck, M. W. & Bewley, J. D. (1981). Responses of the moss Tortula ruralis to desiccation treatments. II. Variations in desiccation tolerance. Canadian Journal of Botany, 59, 2707–12.CrossRefGoogle Scholar
Schönherr, J. & Ziegler, H. (1975). Hydrophobic cuticular ledges prevent water entering the air pores of liverwort thalli. Planta, 124, 51–60.CrossRefGoogle ScholarPubMed
Schreiber, U., Bilger, W. & Neubauer, C. (1995). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of Photosynthesis, ed. Schulze, E.-D. & Caldwell, M. M., pp. 49–70. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Schwabe, W. & Nachmony-Bascomb, S. (1963). Growth and dormancy in Lunularia cruciata (L.) Dum. II. The response to daylength and temperature. Journal of Experimental Botany, 14, 353–78.CrossRefGoogle Scholar
Seel, W. E., Hendry, G. A. F. & Lee, J. A. (1992). Effects of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses. Journal of Experimental Botany, 43, 1031–7.CrossRefGoogle Scholar
Slavik, B. (1965). The influence of decreasing hydration level on photosynthetic rate in the thalli of the hepatic Conocephalum conicum. In Water Stress in Plants. Proceedings of a Symposium held in Prague, September 30–October 4, 1963, ed. Slavik, B., pp. 195–201. The Hague: W. Junk.Google Scholar
Smirnoff, N. (1992). The carbohydrates of bryophytes in relation to desiccation tolerance. Journal of Bryology, 17, 185–91.CrossRefGoogle Scholar
Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 125, 27–58.CrossRefGoogle Scholar
Smirnoff, N. (ed.) (2005). Antioxidants and Reactive Oxygen Species in Plants. Oxford: Blackwell.CrossRef
Smith, E. C. & Griffiths, H. (1996a). The occurrence of the chloroplast pyrenoid is correlated with the activity of a CO2-concentrating mechanism and carbon isotope discrimination in lichens and bryophytes. Planta, 198, 6–16.CrossRefGoogle Scholar
Smith, E. C. & Griffiths, H. (1996b) A pyrenoid-based carbon-concentrating mechanism is present in terrestrial bryophytes of the class Anthocerotae. Planta, 200, 203–12.CrossRefGoogle Scholar
Stark, L. R. (2005). Phenology of patch hydration, patch temperature and sexual reproductive output in the desert moss Crossidium crassinerve. Journal of Bryology, 27, 231–40.CrossRefGoogle Scholar
Stark, L. R., Oliver, M. J., Mishler, B. D. & McLetchie, D. N. (2007). Generational differences in response to desiccation stress in the desert moss Tortula inermis. Annals of Botany, 99, 53–60.CrossRefGoogle ScholarPubMed
Steudle, E. & Peterson, C. A. (1998). How does water get through roots?Journal of Experimental Botany, 49, 775–88.Google Scholar
Sveinbjörnsson, B. & Oechel, W. C. (1992). Controls on growth and productivity of bryophytes: environmental limitations under current and anticipated conditions. In Bryophytes and Lichens in a Changing Environment, ed. Bates, J. W. & Farmer, A. M., pp. 77–102. Oxford: Clarendon Press.Google Scholar
Teeri, J. A. (1981). Stable carbon isotope analysis of mosses and lichens growing in xeric and moist habitats. Bryologist, 84, 82–4.CrossRefGoogle Scholar
Tuba, Z., Csintalan, Zs. & Proctor, M. C. F. (1996). Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present CO2 concentration. New Phytologist, 133, 353–61.CrossRefGoogle Scholar
Valanne, N. (1984). Photosynthesis and photosynthetic products in mosses. In The Experimental Biology of Bryophytes, ed. Dyer, A. F. & Duckett, J. G., pp. 257–73. London: Academic Press.Google Scholar
Vitt, D. H. (1990). Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients. Botanical Journal of the Linnean Society, 104, 35–59.CrossRefGoogle Scholar
Werner, O., Espin, R. M. R., Bopp, M. & Atzorn, R. (1991). Abscisic-acid induced drought tolerance in Funaria hygrometrica Hedw. Planta, 186, 99–103.CrossRefGoogle ScholarPubMed
Williams, T. G. & Flanagan, L. B. (1996). Effect of changes in water content on photosynthesis, transpiration and discrimination against 13CO2 and C18O16O in Pleurozium and Sphagnum. Oecologia, 108, 38–46.CrossRefGoogle ScholarPubMed
Wood, A. J. (2007). The nature and distribution of vegetative desiccation tolerance in hornworts, liverworts and mosses. Bryologist, 110, 163–77.CrossRefGoogle Scholar
Zimmermann, U. & Steudle, E. (1978). Physical aspects of water relations of plant cells. Advances in Botanical Research, 6, 46–117.Google Scholar
Zotz, G. & Rottenberger, S. (2001). Seasonal changes in diel CO2 exchange of three Central European moss species: a one-year field study. Plant Biology, 3, 661–9.CrossRefGoogle Scholar
Zotz, G., Schweikert, A., Jetz, W. & Westerman, H. 2000. Water relations and carbon gain in relation to cushion size in the moss Grimmia pulvinata (Hedw.) Sm. New Phytologist, 148, 59–67.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×