Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-18T12:20:30.828Z Has data issue: false hasContentIssue false

4 - Phylogenomics and early land plant evolution

Published online by Cambridge University Press:  06 July 2010

Bernard Goffinet
Affiliation:
University of Connecticut
A. Jonathan Shaw
Affiliation:
Duke University, North Carolina
Get access

Summary

Introduction

This is the era of whole-genome sequencing; molecular data are becoming available at a rate unanticipated even a few years ago. Sequencing projects in a number of countries have produced a growing number of fully sequenced organellar and nuclear genomes, providing computational biologists with tremendous opportunities, but also major challenges. The sheer amount of data is nearly overwhelming; comparative frameworks are needed. Comparative genomics was initially restricted to pairwise comparisons of genomes based on sequence similarity matching. The importance of taking a multispecies phylogenetic approach to systematically relating larger sets of genomes has only recently been realized.

Something can be learned about the function of genes by examining them in one organism, or by comparisons between two organisms. However, a much richer approach is to compare many organisms at once by using a phylogenetic approach, which lets us take advantage of the burgeoning number of phylogenetic comparative methods. A synthesis of phylogenetic systematics and molecular biology/genomics – two fields once estranged – is beginning to form a new field that could be called “phylogenomics” (Eisen 1998). We need to take advantage of the rich, multispecies approach provided by taking into account the history of life. Repeated, close sister-group comparisons between lineages differing in a critical phenotype (e.g. desiccation- or freezing-tolerance) can allow a quick narrowing of the search for genetic causes in a sort of natural experiment.

Type
Chapter
Information
Bryophyte Biology , pp. 173 - 198
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerly, D. (1997). Plant life histories: A meeting of phylogeny and ecology. Trends in Ecology and Evolution, 12, 7–9.CrossRefGoogle ScholarPubMed
Albert, V. A., Backlund, A., Bremer, K.et al. (1994). Functional constraints and rbcL evidence for land plant phylogeny. Annals of the Missouri Botanical Garden, 81, 534–67.CrossRefGoogle Scholar
Albert, V. A., Soltis, D. E., Carlson, J. E.et al. (2005). Floral gene resources from basal angiosperms for comparative genomics research. BMC Plant Biology, 5, 5.CrossRefGoogle ScholarPubMed
Baltimore, D. (2001). Our genome unveiled. Nature, 409, 814–16.CrossRefGoogle ScholarPubMed
Barnabas, S., Krishnan, S. & Barnabas, J. (1995). The branching pattern of major groups of land plants inferred from parsimony analysis of ribosomal RNA sequences. Journal of Biosciences, 20, 259–72.CrossRefGoogle Scholar
Bartels, D. & Salamini, F. (2001). Desiccation tolerance in the resurrection plant Craterostigma plantagineum: a contribution to the study of drought tolerance at the molecular level. Plant Physiology, 127, 1346–53.CrossRefGoogle Scholar
Bernacchia, G. & Furini, A. (2004). Biochemical and molecular responses to water stress in resurrection plants. Physiologia Plantarum, 121, 175–81.CrossRefGoogle ScholarPubMed
Black, M. & Pritchard, H. (eds.). (2002). Desiccation and Survival in Plants: Drying Without Dying. Wallingford: CAB International.CrossRefGoogle Scholar
Boore, J. L. & Brown, W. M. (1998). Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Current Opinion in Genetics and Development, 8, 668–74.CrossRefGoogle ScholarPubMed
Boore, J. L., Collins, T. M., Stanton, D., Daehler, L. L. & Brown, W. M. (1995). Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature, 376, 163–5.CrossRefGoogle ScholarPubMed
Bromham, L. (2003). What can DNA tell us about the Cambrian explosion?Integrative and Comparative Biology, 43, 148–56.CrossRefGoogle ScholarPubMed
Brooks, D. R. & McLennan, D. (1991). Phylogeny, Ecology, and Behavior. Chicago, IL: University of Chicago Press.Google Scholar
Champagne, C. E. M. & Ashton, N. W. (2001). Ancestry of KNOX genes revealed by bryophyte (Physcomitrella patens) homologs. New Phytologist, 150, 23–36.CrossRefGoogle Scholar
Chang, C. C., Lin, H. C., Lin, I. P.et al. (2006). The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Molecular Biology and Evolution, 23, 279–91.CrossRefGoogle ScholarPubMed
Chapman, R. L. & Waters, D. A. (2002). Green algae and land plants – an answer at last?Journal of Phycology, 38, 237–40.CrossRefGoogle Scholar
Cronk, Q. C. (2001). Plant evolution and development in a post-genomic context. Nature Reviews Genetics, 2, 607–19.CrossRefGoogle Scholar
Donoghue, M. J. (1989). Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution, 43, 1137–56.CrossRefGoogle ScholarPubMed
Dowton, M., Castro, L. R. & Austin, A. D. (2002). Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: the examination of genome ‘morphology’. Invertebrate Systematics, 16, 345–56.CrossRefGoogle Scholar
Doyle, J. J. (1994). Phylogeny of the legume family: an approach to understanding the origins of nodulation. Annual Review of Ecology and Systematics, 25, 325–49.CrossRefGoogle Scholar
Doyle, J. J. (1995). DNA data sets and legume phylogeny: a progress report. In Advances in Legume Systematics, part 7, ed. Crisp, M. D. & Doyle, J. J., pp. 11–30. Kew: Royal Botanic Gardens.Google Scholar
Duff, R. J. & Nickrent, D. L. (1999). Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. American Journal of Botany, 86, 372–86.CrossRefGoogle ScholarPubMed
Eisen, J. A. (1998). Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Research, 8, 163–7.CrossRefGoogle ScholarPubMed
Funk, V. A. & Brooks, D. R. (1990). Phylogenetic Systematics as the Basis of Comparative Biology. Washington, D. C.: Smithsonian Institution Press.CrossRefGoogle Scholar
Gallut, C. & Barriel, V. (2002). Cladistic coding of genomic maps. Cladistics, 18, 526–36.CrossRefGoogle Scholar
Garbary, D. J., Renzaglia, K. S. & Duckett, J. G. (1993). The phylogeny of land plants: a cladistic analysis based on male gametogenesis. Plant Systematics and Evolution, 188, 237–69.CrossRefGoogle Scholar
Garbary, D. J. & Renzaglia, K. S. (1998). Bryophyte phylogeny and evolution of land plants: evidence from development and ultrastructure. In Bryology for the Twenty-First Century, ed. Bates, J. W., Ashton, N. W. & Duckett, J. G., pp. 45–63. Leeds: Maney and the British Bryological Society.Google Scholar
Goffinet, B. (2000). Origin and phylogenetic relationships of bryophytes. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 124–49. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Goffinet, B., Wickett, N. J., Werner, O.et al. (2007). Distribution and phylogenetic significance of a 71 kb inversion in the chloroplast genome of the Funariidae (Bryophyta). Annals of Botany, 99, 747–53.CrossRefGoogle Scholar
Goffinet, B., Wickett, N. J., Shaw, A. J. & Cox, C. J. (2005). Phylogenetic significance of the rpoA loss in the chloroplast genome of mosses. Taxon, 54, 353–60.CrossRefGoogle Scholar
Goremykin, V., Hirsch-Ernst, K. I. S., Wölfl, S. & Hellwig, F. H. (2003). Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Molecular Biology and Evolution, 20, 1499–505.CrossRefGoogle Scholar
Goremykin, V., Hirsch-Ernst, K. I. S., Wölfl, S. & Hellwig, F. H. (2004). The chloroplast genome of the “basal” angiosperm Calycanthus fertilis – structural and phylogenetic analyses. Plant Systematics and Evolution, 242, 119–35.CrossRefGoogle Scholar
Goremykin, V. V., Holland, B., Hirsch-Ernst, K. I. & Hellwig, F. H. (2005). Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Molecular Biology and Evolution, 22, 1813–22.CrossRefGoogle ScholarPubMed
Goulding, S. E., Olmstead, R. G., Morden, C. W. & Wolfe, K. H. (1996). Ebb and flow of the chloroplast inverted repeat. Molecular and General Genetics, 252, 195–206.CrossRefGoogle ScholarPubMed
Graham, L.-E. (1993). The Origin of Land Plants. New York: Wiley.Google Scholar
Gray, J. (1993). Major Paleozoic land plant evolutionary bio-events. Palaeogeography, Palaeoclimatology, Palaeoecology, 104, 153–69.CrossRefGoogle Scholar
Harvey, P. H. & Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.Google Scholar
Hedderson, T. A., Chapman, R. L. & Rootes, W. L. (1996). Phylogenetics of bryophytes inferred from nuclear-encoded rRNA gene sequences. Plant Systematics and Evolution, 200, 213–24.CrossRefGoogle Scholar
Henschel, K., Kofuji, R., Hasebe, M.et al. (2002). Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Molecular Biology and Evolution, 19, 801–14.CrossRefGoogle ScholarPubMed
Hori, H., Lim, B. L. & Osawa, S. (1985). Evolution of green plants as deduced from 5S ribosomal RNA sequences. Proceedings of the National Academy of Sciences, U.S.A., 82, 820–3.CrossRefGoogle Scholar
Hupfer, H., Swiate, M., Hornung, S.et al. (2000). Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable Euoenothera plastomes. Molecular Genetics and Genomics, 263, 581–5.Google ScholarPubMed
Jansen, R. K. & Palmer, J. D. (1987). A chloroplast DNA inversion marks an ancient split in the sunflower family Asteraceae. Proceedings of the National Academy of Sciences, U.S.A., 84, 5818–22.CrossRefGoogle Scholar
Kallersjo, M., Farris, J. S., Chase, M. W.et al. (1998). Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. Plant Systematics and Evolution, 213, 259–87.CrossRefGoogle Scholar
Karol, K. G., McCourt, R. M., Cimino, M. T. & Delwiche, C. F. (2001). The closest living relatives of land plants. Science, 294, 2351–3.CrossRefGoogle ScholarPubMed
Kelch, D. G., Driskell, A. & Mishler, B. D. (2004). Inferring phylogeny using genomic characters: a case study using land plant plastomes. Monographs in Systematic Botany from the Missouri Botanical Garden, 68, 3–12.Google Scholar
Kenrick, P. & Crane, P. R. (1997). The origin and early evolution of plants on land. Nature, 389, 33–9.CrossRefGoogle Scholar
Knoop, V. (2004). The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Current Genetics, 46, 123–39.CrossRefGoogle ScholarPubMed
Kugita, M., Kaneko, A., Yamamoto, Y.et al. (2003). The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucleic Acids Research, 31, 716–21.CrossRefGoogle ScholarPubMed
Kunnimalaiyaan, M. & Nielsen, B. L. (1997). Fine mapping of replication origins (ori A and ori B) in Nicotiana tabacum chloroplast DNA. Nucleic Acids Research, 25, 3681–6.CrossRefGoogle Scholar
Lewis, L. A., Mishler, B. D. & Vilgalys, R. (1997). Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene rbcL. Molecular Phylogenetics and Evolution, 7, 377–93.CrossRefGoogle Scholar
Maddison, W. P. (1990). A method for testing the correlated evolution of two binary characters: are gains or losses concentrated on certain branches of a phylogenetic tree?Evolution, 44, 539–57.CrossRefGoogle ScholarPubMed
Martins, E. P. (1996). Phylogenies and the Comparative Method in Animal Behavior. Oxford: Oxford University Press.Google Scholar
Maier, R. M., Neckermann, K., Igloi, G. L. & Kossel, H. (1995). Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. Journal of Molecular Biology, 251, 614–28.CrossRefGoogle ScholarPubMed
Malek, O., Laettig, K., Hiesel, R., Brennicke, A. & Knoop, V. (1996). RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO (European Molecular Biology Organization) Journal, 15, 1403–11.Google Scholar
Mishler, B. D. (2000). Deep phylogenetic relationships among “plants” and their implications for classification. Taxon, 49, 661–83.CrossRefGoogle Scholar
Mishler, B. D. (2005). The logic of the data matrix in phylogenetic analysis. In Parsimony, Phylogeny, and Genomics, ed. Albert, V. A., pp. 57–70. Oxford: Oxford University Press.Google Scholar
Mishler, B. D. & Churchill, S. P. (1984). A cladistic approach to the phylogeny of the “bryophytes”. Brittonia, 36, 406–24.CrossRefGoogle Scholar
Mishler, B. D. & Churchill, S. P. (1985). Transition to a land flora: phylogenetic relationships of the green algae and bryophytes. Cladistics, 1, 305–28.CrossRefGoogle Scholar
Mishler, B. D. & Luna, E. (1991). The use of ontogenetic data in phylogenetic analyses of mosses. Advances in Bryology, 4, 121–67.Google Scholar
Mishler, B. D., Thrall, P. H., Hopple, J. S. Jr., Luna, E. & Vilgalys, R. (1992). A molecular approach to the phylogeny of bryophytes: cladistic analysis of chloroplast-encoded 16S and 23S ribosomal RNA genes. Bryologist, 95, 172–80.CrossRefGoogle Scholar
Mishler, B. D., Lewis, L. A., Buchheim, M. S.et al. (1994). Phylogenetic relationships of the “green algae” and “bryophytes.”Annals of the Missouri Botanical Garden, 81, 451–83.CrossRefGoogle Scholar
Morton, B. R. & Clegg, M. T. (1993). A chloroplast DNA mutational hotspot and gene conversion in a noncoding region near rbcL in the grass family (Poaceae). Current Genetics, 24, 357–65.CrossRefGoogle Scholar
Nickrent, D. L., Parkinson, C. L., Palmer, J. D. & Duff, R. J. (2000). Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Molecular Biology and Evolution, 17, 1885–95.CrossRefGoogle ScholarPubMed
Nishiyama, T. & Kato, M. (1999). Molecular phylogenetic analysis among bryophytes and tracheophytes based on combined data of plastid coded genes and the 18S rRNA gene. Molecular Biology and Evolution, 16, 1027–36.CrossRefGoogle ScholarPubMed
Nishiyama, T., Wolf, P. G., Kugita, M.et al. (2004). Chloroplast phylogeny indicates that bryophytes are monophyletic. Molecular Biology and Evolution, 21, 1813–19.CrossRefGoogle ScholarPubMed
Ogihara, Y., Isono, K., Kojima, T.et al. (2002). Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Molecular Genetics and Genomics, 266, 740–6.Google ScholarPubMed
Oliver, M. J., Mishler, B. D. & Quisenberry, J. E. (1993). Comparative measures of desiccation-tolerance in the Tortula ruralis complex. I. Variation in damage control and repair. American Journal of Botany, 80, 127–36.CrossRefGoogle Scholar
Oliver, M. J., Tuba, Z. & Mishler, B. D. (2000). The evolution of desiccation tolerance in land plants. Plant Ecology, 151, 85–100.CrossRefGoogle Scholar
Oliver, M. J., Velten, J. & Mishler, B. D. (2005). Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats?Integrative and Comparative Biology, 45, 788–99.CrossRefGoogle ScholarPubMed
Oliver, M. J., Dowd, S. E., Zaragoza, J., Mauget, S. A. & Payton, P. R. (2004). The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics, 5 (89), 1–19.CrossRefGoogle ScholarPubMed
Plunkett, G. M. & Downie, S. R. (2000). Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae. Systematic Botany, 25, 648–67.CrossRefGoogle Scholar
Porembski, S. & Barthlott, W. (2000). Granitic and gneissic outcrops (inselbergs) as center of diversity for desiccation-tolerant vascular plants. Plant Ecology, 151, 19–28.CrossRefGoogle Scholar
Pruchner, D., Beckert, S., Muhle, H. & Knoop, V. (2002). Divergent intron conservation in the mitochondrial nad2 gene: signatures for the three bryophyte classes (mosses, liverworts, and hornworts) and the lycophytes. Journal of Molecular Evolution, 55, 265–71.CrossRefGoogle ScholarPubMed
Qiu, Y. L. & Palmer, J. D. (1999). Phylogeny of early land plants: insights from genes and genomes. Trends in Plant Science, 4, 26–30.CrossRefGoogle ScholarPubMed
Qiu, Y. -L., Cho, Y., Cox, J. C. & Palmer, J. D. (1998). The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature, 394, 671–4.CrossRefGoogle ScholarPubMed
Qiu, Y. -L., Li, L., Wang, B.et al. (2006). The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences, U.S.A., 103, 15511–16.CrossRefGoogle ScholarPubMed
Raubeson, L. A. & Jansen, R. K. (1992). Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science, 255, 1697–9.CrossRefGoogle ScholarPubMed
Rokas, A. & Holland, P. W. H. (2000). Rare genomic changes as a tool for phylogenetics. Trends in Ecology and Evolution, 15, 454–9.CrossRefGoogle ScholarPubMed
Roper, J. M., Hansen, S. K., Wolf, P. G.et al. (2007). The complete plastid genome sequence of Angiopteris evecta (G. Forst.) Hoffm. (Marattiaceae). American Fern Journal, 97, 95–106.CrossRefGoogle Scholar
Sanderson, M. J. & Donoghue, M. J. (1989). Patterns of variation in levels of homoplasy. Evolution, 43, 1781–95.CrossRefGoogle ScholarPubMed
Sato, S., Nakamura, Y., Kaneko, T., Asamizu, E. & Tabata, S. (1999). Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Research, 6, 283–90.CrossRefGoogle ScholarPubMed
Schmitz-Linneweber, C., Maier, R. M., Alcaraz, J. P.et al. (2001). The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Molecular Biology, 45, 307–15.CrossRefGoogle ScholarPubMed
Schmitz-Linneweber, C., Regel, R., Du, T. G.et al. (2002). The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Molecular Biology and Evolution, 19, 1602–12.CrossRefGoogle ScholarPubMed
Singer, S. D., Krogan, N. T. & Ashton, N. W. (2007). Clues about the ancestral roles of plant MADS-box genes from a functional analysis of moss homologues. Plant Cell Reports, 26, 1155–69.CrossRefGoogle ScholarPubMed
Soltis, P. S., Soltis, D. E., Wolf, P. G.et al. (1999). The phylogeny of land plants inferred from 18S rDNA sequences: pushing the limits of rDNA signal?Molecular Biology and Evolution, 16, 1774–4.CrossRefGoogle ScholarPubMed
Stein, D. B., Conant, D. S., Ahearn, M. E.et al. (1992). Structural rearrangements of the chloroplast genome provide an important phylogenetic link in ferns. Proceedings of the National Academy of Sciences, U.S.A., 89, 1856–60.CrossRefGoogle ScholarPubMed
Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. (2003). A gene-coexpression network for global discovery of conserved genetic modules. Science, 302, 249.CrossRefGoogle ScholarPubMed
Sugiura, C., Kobayashi, Y., Aoki, S., Sugita, C. & Sugita, M. (2003). Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Research, 31, 5324–31.CrossRefGoogle ScholarPubMed
Swofford, D. L. (2003). PAUP✳: Phylogenetic Analysis Using Parsimony (✳and Other Methods). Sunderland, MA: Sinauer Associates.Google Scholar
Turmel, M., Otis, C. & Lemieux, C. (2002). The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proceedings of the National Academy of Sciences, U.S.A., 99, 11275–80.CrossRefGoogle ScholarPubMed
Turmel, M., Otis, C. & Lemieux, C. (2006). The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Molecular Biology and Evolution, 23, 1324–38.CrossRefGoogle ScholarPubMed
Umesono, K., Inokuchi, H., Shiki, Y.et al. (1988). Structure and organization of Marchantia polymorpha chloroplast genome. II. Gene organization of the large single copy region from rps'12 to atpB. Journal of Molecular Biology, 203, 299–331.CrossRefGoogle ScholarPubMed
Wakasugi, T., Tsudzuki, J., Ito, S.et al. (1994). Loss of all ndh genes as determined by sequencing the entire genome of the black pine Pinus thunbergii. Proceedings of the National Academy of Sciences, U.S.A., 91, 9794–8.CrossRefGoogle ScholarPubMed
Wanntorp, H.-E., Brooks, D. R., Nilsson, T.et al. (1990). Phylogenetic approaches in ecology. Oikos, 57, 119–32.CrossRefGoogle Scholar
Weller, S. G. & Sakai, A. K. (1999). Using phylogenetic approaches for the analysis of plant breeding system evolution. Annual Review of Ecology and Systematics, 30, 167–99.CrossRefGoogle Scholar
Wolf, P. G., Rowe, C. A., Sinclair, R. B. & Hasebe, M. (2003). Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. DNA Research, 10, 59–65.CrossRefGoogle ScholarPubMed
Wolf, P. G., Karol, K. G., Mandoli, D. F.et al. (2005). The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene, 350, 117–28.CrossRefGoogle Scholar
Wolfe, K. H., Morden, C. W. & Palmer, J. D. (1992). Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proceedings of the National Academy of Sciences, U.S.A., 89, 10648–52.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×