Book contents
- Frontmatter
- Dedication
- Contents
- Editors
- Contributors
- Foreword
- Acknowledgments
- Introduction
- Chapter 1 Chronological and Ontological Development of Engineering Education as a Field of Scientific Inquiry
- Part 1 Engineering Thinking and Knowing
- Part 2 Engineering Learning Mechanisms and Approaches
- Part 3 Pathways into Diversity and Inclusiveness
- Chapter 14 Engineering Identity
- Chapter 15 Studying the Career Pathways of Engineers
- Chapter 16 Retention and Persistence of Women and Minorities Along the Engineering Pathway in the United States
- Chapter 17 Social Justice and Inclusion
- Chapter 18 Community Engagement in Engineering Education as a Way to Increase Inclusiveness
- Part 4 Engineering Education and Institutional Practices
- Part 5 Research Methods and Assessment
- Part 6 Cross-Cutting Issues and Perspectives
- Index
- References
Chapter 15 - Studying the Career Pathways of Engineers
An Illustration with Two Data Sets
Published online by Cambridge University Press: 05 February 2015
- Frontmatter
- Dedication
- Contents
- Editors
- Contributors
- Foreword
- Acknowledgments
- Introduction
- Chapter 1 Chronological and Ontological Development of Engineering Education as a Field of Scientific Inquiry
- Part 1 Engineering Thinking and Knowing
- Part 2 Engineering Learning Mechanisms and Approaches
- Part 3 Pathways into Diversity and Inclusiveness
- Chapter 14 Engineering Identity
- Chapter 15 Studying the Career Pathways of Engineers
- Chapter 16 Retention and Persistence of Women and Minorities Along the Engineering Pathway in the United States
- Chapter 17 Social Justice and Inclusion
- Chapter 18 Community Engagement in Engineering Education as a Way to Increase Inclusiveness
- Part 4 Engineering Education and Institutional Practices
- Part 5 Research Methods and Assessment
- Part 6 Cross-Cutting Issues and Perspectives
- Index
- References
Summary
Introduction
While calls for the strengthening of U.S. education once again surface in the name of global competitiveness, a primary issue facing engineering education is retention in the profession. As Lowell and Salzman (2007) have argued, the demand for engineers and scientists remains strong and the overall production of engineers and scientists appears more than adequate. The troubling trend over the last two decades, however, is that the highest performing students and graduates are leaving science and engineering pathways at higher rates than are their lower performing peers (Lowell, Salzman, Bernstein, & Henderson, 2009). This finding is significant for engineering education as it identifies an important direction for research in this area. Based on their study of pathways through and beyond college, Lowell et al. (2009) conclude that “students are not leaving STEM pathways because of lack of preparation or ability” and that research efforts should turn to “factors other than educational preparation or student ability in this compositional shift to lower-performing students in the STEM pipeline” (p. iii).
Our understanding of the aforementioned shift is limited even while the study of engineering career pathways began as early as the late 1970s with the work of LeBold, Bond, and Thomas (1977) on black engineers at Purdue University. Although the literature on engineering education and the profession has proliferated since that time, relatively few studies have looked carefully at the career decisions of engineering graduates. For instance, much of the work on engineering career pathways simply accounts for the numbers of engineers at different points in the pathway to quantify attrition points and rates (e.g., Bradburn, Nevill, Forrest, Cataldi, & Perry, 2006; Choy, Bradburn, & Carroll, 2008; Forrest Cataldi et al., 2011; Frehill, 2007a; Reese, 2003; Regets, 2006) and provides little information on differential pathways or the factors which influence these pathways. More recent work investigates aspects of early career engineers that reflect a focus beyond educational preparation and training and academic and technical ability (e.g., Fouad & Singh, 2011; Ro, 2011), but a thorough review reveals a collection of data sets and studies that remain incomplete for comprehensively understanding the early career pathways of engineers.
- Type
- Chapter
- Information
- Cambridge Handbook of Engineering Education Research , pp. 283 - 310Publisher: Cambridge University PressPrint publication year: 2014
References
- 54
- Cited by