An Illustration with Two Data Sets
Published online by Cambridge University Press: 05 February 2015
Introduction
While calls for the strengthening of U.S. education once again surface in the name of global competitiveness, a primary issue facing engineering education is retention in the profession. As Lowell and Salzman (2007) have argued, the demand for engineers and scientists remains strong and the overall production of engineers and scientists appears more than adequate. The troubling trend over the last two decades, however, is that the highest performing students and graduates are leaving science and engineering pathways at higher rates than are their lower performing peers (Lowell, Salzman, Bernstein, & Henderson, 2009). This finding is significant for engineering education as it identifies an important direction for research in this area. Based on their study of pathways through and beyond college, Lowell et al. (2009) conclude that “students are not leaving STEM pathways because of lack of preparation or ability” and that research efforts should turn to “factors other than educational preparation or student ability in this compositional shift to lower-performing students in the STEM pipeline” (p. iii).
Our understanding of the aforementioned shift is limited even while the study of engineering career pathways began as early as the late 1970s with the work of LeBold, Bond, and Thomas (1977) on black engineers at Purdue University. Although the literature on engineering education and the profession has proliferated since that time, relatively few studies have looked carefully at the career decisions of engineering graduates. For instance, much of the work on engineering career pathways simply accounts for the numbers of engineers at different points in the pathway to quantify attrition points and rates (e.g., Bradburn, Nevill, Forrest, Cataldi, & Perry, 2006; Choy, Bradburn, & Carroll, 2008; Forrest Cataldi et al., 2011; Frehill, 2007a; Reese, 2003; Regets, 2006) and provides little information on differential pathways or the factors which influence these pathways. More recent work investigates aspects of early career engineers that reflect a focus beyond educational preparation and training and academic and technical ability (e.g., Fouad & Singh, 2011; Ro, 2011), but a thorough review reveals a collection of data sets and studies that remain incomplete for comprehensively understanding the early career pathways of engineers.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.