Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-12T10:18:23.006Z Has data issue: false hasContentIssue false

4 - The physics of nanotubes

Published online by Cambridge University Press:  28 January 2010

Peter J. F. Harris
Affiliation:
University of Reading
Get access

Summary

When we get to the very, very small world – say circuits of seven

atoms – we have a lot of new things that would happen that

represent completely new opportunities for design. Atoms on a

small scale behave like nothing on a large scale, for they satisfy the

laws of quantum mechanics.

Richard Feynman, There's plenty of room at the bottom

With diameters frequently less than 10 nm, carbon nanotubes fall into the size range where quantum effects become important, and this, combined with their unusual symmetries, has led theoreticians to predict some remarkable electronic, magnetic and lattice properties. As noted in Chapter 1, several groups around the world showed theoretically in late 1991 that nanotubes can be metals or semiconductors depending on their precise structure and diameter. This raised intriguing possibilities such as the idea of creating ‘insulated’ nanowires, in which a conducting tube would be isolated inside a semiconducting one. Other workers pointed out that nanotubes might exhibit exotic quantum mechanical behaviour such as the Aharonov–Bohm effect in the presence of a magnetic field. Initially, testing the theoretical predictions proved problematic. Measurements on the bulk material were difficult to interpret because bulk samples inevitably contained a wide variety of tube structures and sizes, as well as other material such as nanoparticles. The development of methods for purifying nanotube samples enabled some progress to be made, but the results were still rather difficult to interpret. Recently, however, a number of groups have succeeded in carrying out electronic measurements on individual nanotubes, and in constructing nanotube-based electronic devices. These remarkable experiments are among the highlights of nanotube research to date.

Type
Chapter
Information
Carbon Nanotubes and Related Structures
New Materials for the Twenty-first Century
, pp. 111 - 155
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×