Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-12T10:24:20.508Z Has data issue: false hasContentIssue false

7 - Curved crystals, inorganic fullerenes and nanorods

Published online by Cambridge University Press:  28 January 2010

Peter J. F. Harris
Affiliation:
University of Reading
Get access

Summary

Daedalus, who published detailed predictions of hollow graphite

molecules years ago, points out that other substances with sheet

molecules, such as molybdenum disulphide and mica, should also

fragment into flakes and curl up under the same treatment.

David Jones, New Scientist, 24 April 1986

Following the discovery of C60 in 1985, the ever-inventive Daedalus sought to maintain his lead over the experimentalists by putting forward the idea of inorganic fullerenes. A number of inorganic compounds form graphite-like layered crystals, so the idea of closed structures based on these materials certainly seemed plausible. In fact curved inorganic crystals had been known since the 1950s, having been proposed theoretically by Linus Pauling in 1930 (7.1). The most striking example occurs in the chrysotile form of serpentine, the primary constituent of most asbestos, which occurs primarily as tightly curled tubular structures. However, such structures differ from fullerenes in that the curvature derives solely from a structural mismatch between adjacent layers. In a true inorganic fullerene the curvature would be associated with point defects equivalent to the pentagons in carbon fullerenes. Particles of tungsten disulphide and other dichalcogenides with just this kind of structure have now been synthesised (7.2). Yet again the discovery was serendipitous, and occurred as a byproduct of attempts by Reshef Tenne and co-workers at the Weizmann Institute in Israel to prepare thin films of tungsten disulphide for use in solar cells. Subsequent work has shown that the inorganic fullerenes have exceptional lubricating properties.

Boron nitride is another material which exists in a graphite-like layered form, and in the 1980s various groups showed that graphite hybrids containing C, B and N could be prepared (e.g. 7.3).

Type
Chapter
Information
Carbon Nanotubes and Related Structures
New Materials for the Twenty-first Century
, pp. 213 - 234
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×