Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T14:20:07.993Z Has data issue: false hasContentIssue false

Chapter 11 - Screening Informatics and Cheminformatics

from Section Three - Basics of High-Throughput Screening

Published online by Cambridge University Press:  05 June 2012

Get access

Summary

Chemical genomics projects generate enormous amounts of data in a relatively short period of time. A screening campaign against a single target can produce millions of data points before data refinement is performed [1]. Generated data must then be stored and crosslinked with data from other projects. Informatics plays a critical role in all high-throughput screening (HTS) campaigns because of the sheer volume of data that need to be interpreted and the speed at which data are generated.

Informatics activities during a screening campaign are traditionally split into two primary functions, screening informatics and cheminformatics [2–5], which are usually treated as two separate disciplines because of the different training and experience required. In brief, screening informatics concentrates efforts on data organization, quality control, accessibility, and visualization, whereas cheminformatics focuses on identification of dominant chemical structural scaffolds that demonstrate a biological advantage in an HTS campaign and recommendation of functional changes for structural optimization. Although there are stages during a screening campaign when screening informatics and cheminformatics work independently, for most of a campaign, close collaboration is required to provide the highest-quality information for decision-making processes. Both types of informatics utilize databases and specialized software to support experimental biologists and chemists. Importantly, the integration of chemical structure data with assay results must be maintained by both screening informatics and cheminformatics teams in order to be useful for future work. This chapter introduces basic applications of screening informatics and cheminformatics for HTS.

Type
Chapter
Information
Chemical Genomics , pp. 137 - 156
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ling, X. B. 2008 High throughput screening informaticsComb Chem High Throughput Screen 11 249Google Scholar
Brown, F. K. 1998 Chemoinformatics: what is it and how does it impact drug discoveryAnn Rep Med Chem 33 375Google Scholar
Wishart, D. S. 2007 Introduction to cheminformaticsCurr Protoc Bioinformatics 1Google Scholar
Sukumar, N.Krein, M.Breneman, C. M. 2008 Bioinformatics and cheminformatics: where do the twain meetCurr Opin Drug Discov Devel 11 311Google Scholar
Oprea, T. I.Tropsha, A.Faulon, J. L.Rintoul, M. D. 2007 Systems chemical biologyNat Chem Biol 3 447Google Scholar
Kaushal, D.Naeve, C. W. 2004 Analyzing and visualizing expression data with SpotfireCurr Protoc Bioinformatics 9Google Scholar
Kaushal, D.Naeve, C. W. 2004 Loading and preparing data for analysis in spotfireCurr Protoc Bioinformatics 8Google Scholar
Motulsky, H.Christopoulos, A. 2004 Fitting models to biological data using linear and nonlinear regressionA Practical Guide to Curve FittingNew YorkOxford University Press
Zhang, J. H.Chung, T. D.Oldenburg, K. R. 1999 A simple statistical parameter for use in evaluation and validation of high throughput screening assaysJ Biomol Screen 4 67Google Scholar
Slaughter, S.Delwiche, L. 2010 The Little SAS Book for Enterprise GuideCary, N.CSAS Institute Inc
Hill, T.Lewicki, P. 2007 Statistics: Methods and ApplicationsTulsa, OklaStatSoft, Inc
Hassan, M.Brown, R. D.Varma-O’Brien, S.Rogers, D. 2006 Cheminformatics analysis and learning in a data pipelining environmentMol Divers 10 283Google Scholar
Tiwari, A.Sekhar, A. K. 2007 Workflow based framework for life science informaticsComput Biol Chem 31 305Google Scholar
Assay Guidance Manual Version 5.0 2008 http://www.ncgc.nih.gov/guidance/manual_toc.html
Larson, R. J.Marx, M. L. 2000 An Introduction to Mathematical Statistics and Its ApplicationsRiver, N. JPrentice Hall
Kozikowski, B. A.Burt, T. M.Tirey, D. A.Williams, L. E.Kuzmak, B. R.Stanton, D. T.Morand, K. L.Nelson, S. L. 2003 The effect of freeze/thaw cycles on the stability of compounds in DMSOJ Biomol Screen 8 210Google Scholar
Blaxill, Z.Holland-Crimmin, S.Lifely, R. 2009 Stability through the ages: the GSK experienceJ Biomol Screen 14 547Google Scholar
MacArthur, R.Leister, W.Veith, H.Shinn, P.Southall, N.Austin, C. P.Inglese, J.Auld, D. S. 2009 Monitoring compound integrity with cytochrome P450 assays and qHTSJ Biomol Screen 14 538Google Scholar
Wipf, P.Arnold, D.Carter, K.Dong, S.Johnston, P. A.Sharlow, E.Lazo, J. S.Huryn, D. 2009 A case study from the chemistry core of the Pittsburgh Molecular Library Screening Center: the Polo-like kinase polo-box domain (Plk1-PBD)Curr Top Med Chem 9 1194Google Scholar
Razvi, E. 2003 http://pharmalicensing.com/public/articles/view/1060857367_3f3b6617073e2/emerging-themes-and-quantitative-metrics-in-high-throughput-screening-space
Abraham, V. C.Taylor, D. L.Haskins, J. R. 2003 High-content screening applied to large-scale cell biologyTrends Biotechnol 1 15Google Scholar
Jiang, J.Ganesh, T.Du, Y.Thepchatri, P.Rojas, A.Lewis, I.Kurtkaya, S.Li, L.Qui, M.Serrano, G. 2010
Richon, A. 2000 LeadScope: data visualization for large volumes of chemical and biological screening dataJ Mol Graph Model 18 76Google Scholar
Jarvis, R. A.Patrick, E. A. 1973 Clustering using a similarity measure based on shared nearest neighbors. IEEE TransComput C-22 1025Google Scholar
Willett, P.Winterman, V.Bawden, D. 1986 Implementation of nonhierarchical cluster analysis methods in chemical information systems: selection of compounds for biological testing and clustering of substructure search outputJ Chem Inf Comput Sci 26 109Google Scholar
Burger, A. 1994 Medical chemistry – the first centuryMed Chem Res 4 3Google Scholar
Simeonov, A.Jadhav, A.Thomas, C. J.Wang, Y.Huang, R.Southall, N. T.Shinn, P.Smith, J.Austin, C. P.Auld, D. S. 2008 Fluorescence spectroscopic profiling of compound librariesJ Med Chem 51 2363Google Scholar
Haugland, R. P. 2006 The Handbook – A Guide to Fluorescent Probes and Labeling TechnologiesEugene, OreMolecular Probes, Inc
2007
Sastry, M.Lowrie, J. F.Dixon, S. L.Sherman, W. 2010 Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichmentsJ Chem Inf Model 50 771Google Scholar
2009
Thepchatri, P.Min, J.Ganesh, T.Du, Y.Lewis, I.Kurtkaya, S.Prussia, A.Li, L.Sneed, B.Plemper, R. K. 2009 Cancer and virus leads by HTS, chemical design and SEA data miningCurr Top Med Chem 9 1159Google Scholar
JKlustor was used for clustering and diversity analysis of chemical sets, JChem 2.5.3 2009 http://www.chemaxon.com
Roberts, G.Myatt, Johnson, G. J.Cross, W. P.Blower, K. P.Jr, P. E. 2000 LeadScope: Software for exploring large sets of screening dataJ. Chem 40 1302Google Scholar
Matthews, E. J.Kruhlak, N. L.Benz, R. D.Contrera, J. F.Marchant, C. A.Yang, C. 2008 Combined use of MC4PC, MDL-QSAR, BioEpisteme, Leadscope PDM, and Derek for Windows software to achieve high-performance, high-confidence, mode of action-based predictions of chemical carcinogenesis in rodentsToxicol Mech Methods 18 189Google Scholar
Distill, Tripos International 1699
Berthold, M. R.Cebron, N.Dill, F.Gabriel, T. R.Kotter, T.Meinl, T.Ohl, P.Sieb, C.Thiel, K.Wiswedel, B. 2008 KNIME: The Konstanz Information MinerData Analysis, Machine Learning and ApplicationsPreisach, CSchmidt-Thieme, LBerlinSpringer-Verlag319
2010
Leo, A.Weininger, A. 1995 Daylight Chemical Information Systems, version 3Aliso Viejo, CalifDaylight Chemical Information Systems, Inc
Rogers, D.Brown, R. D.Hahn, M. 2005 Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-upJ Biomol Screen 10 682Google Scholar
Boolell, M.Gepi-Attee, S.Gingell, J. C.Allen, M. J. 1996 Sildenafil, a novel effective oral therapy for male erectile dysfunctionBr J Urol 78 257Google Scholar
Padma-Nathan, H. 2006 Sildenafil citrate (Viagra) treatment for erectile dysfunction: An updated profile of response and effectivenessInt J Impot Res 18 423Google Scholar
Frajese, G. V.Pozzi, F. 2005 Phosphodiesterase type 5 inhibitors in older malesJ Endocrinol Invest 28 112Google Scholar
Porst, H.Giuliano, F.Glina, S.Ralph, D.Casabe, A. R.Elion-Mboussa, A.Shen, W.Whitaker, J. S. 2006 Evaluation of the efficacy and safety of once-a-day dosing of tadalafil 5mg and 10mg in the treatment of erectile dysfunction: results of a multicenter, randomized, double-blind, placebo-controlled trialEur Urol 50 351Google Scholar
Rajfer, J.Aliotta, P. J.Steidle, C. P.Fitch, W. P.Zhao, Y.Yu, A. 2007 Tadalafil dosed once a day in men with erectile dysfunction: a randomized, double-blind, placebo-controlled study in the USInt J Impot Res 19 95Google Scholar
Hatzichristou, D.Gambla, M.Rubio-Aurioles, E.Buvat, J.Brock, G. B.Spera, G.Rose, L.Lording, D.Liang, S. 2008 Efficacy of tadalafil once daily in men with diabetes mellitus and erectile dysfunctionDiabet Med 25 138Google Scholar
Sung, B. J.Hwang, K. Y.Jeon, Y. H.Lee, J. I.Heo, Y. S.Kim, J. H.Moon, J.Yoon, J. M.Hyun, Y. L.Kim, E. 2003 Structure of the catalytic domain of human phosphodiesterase 5 with bound drug moleculesNature 425 98Google Scholar
Rush, T. S.Grant, J. A.Mosyak, L.Nicholls, A. 2005 A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interactionJ Med Chem 48 1489Google Scholar
2007
Jilek, R. J.Cramer, R. D. 2004 Topomers: a validated protocol for their self-consistent generationJ Chem Inf Comput Sci 44 1221Google Scholar
Cramer, R. D.Jilek, R. J.Guessregen, S.Clark, S. J.Wendt, B.Clark, R. D. 2004 Lead hopping.” Validation of topomer similarity as a superior predictor of similar biological activitiesJ Med Chem 47 6777Google Scholar
Vainio, M. J.Puranen, J. S.Johnson, M. S. 2009 ShaEP: molecular overlay based on shape and electrostatic potentialJ Chem Inf Model 49 492Google Scholar
2009
Dixon, S. L.Smondyrev, A. M.Knoll, E. H.Rao, S. N.Shaw, D. E.Friesner, R. A. 2006 PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary resultsJ Comput Aided Mol Des 20 647Google Scholar
Dixon, S. L.Smondyrev, A. M.Rao, S. N. 2006 PHASE: a novel approach to pharmacophore modeling and 3D database searchingChem Biol Drug Des 67 370Google Scholar
Venkatachalam, C. M.Jiang, X.Oldfield, T.Waldman, M. 2003 LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sitesJ Mol Graph Model 21 289Google Scholar
Molecular Operating Environment MOE 2009
2009
DeLano, W. L 2002 http://www.pymol.org
Sybyl, XTripos International, 1699 South Hanley RdSt. Louis, Mo
2010
2010
Pettersen, E. F.Goddard, T. D.Huang, C. C.Couch, G. S.Greenblatt, D. M.Meng, E. C.Ferrin, T. E. 2004 UCSF Chimera – a visualization system for exploratory research and analysisJ Comput Chem 25 1605Google Scholar
Humphrey, W.Dalke, A.Schulten, K. 1996 VMD: visual molecular dynamicsJ Mol Graph 14 33Google Scholar
Schwede, T.Kopp, J.Guex, N.Peitsch, M. C. 2003 SWISS-MODEL: an automated protein homology-modeling serverNucleic Acids Res 31 3381Google Scholar
Krieger, E.Koraimann, G.Vriend, G. 2002 Increasing the precision of comparative models with YASARA NOVA – a self-parameterizing force fieldProteins 47 393Google Scholar
2009
Friesner, R. A.Banks, J. L.Murphy, R. B.Halgren, T. A.Klicic, J. J.Mainz, D. T.Repasky, M. P.Knoll, E. H.Shelley, M.Perry, J. K. 2004 Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracyJ Med Chem 47 1739Google Scholar
Friesner, R. A.Murphy, R. B.Repasky, M. P.Frye, L. L.Greenwood, J. R.Halgren, T. A.Sanschagrin, P. C.Mainz, D. T. 2006 Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexesJ Med Chem 49 6177Google Scholar
Halgren, T. A.Murphy, R. B.Friesner, R. A.Beard, H. S.Frye, L. L.Pollard, W. T.Banks, J. L. 2004 Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screeningJ Med Chem 47 1750Google Scholar
2007
McGann, M. R.Almond, H. R.Nicholls, A.Grant, J. A.Brown, F. K. 2003 Gaussian docking functionsBiopolymers 68 76Google Scholar
Kellenberger, E.Rodrigo, J.Muller, P.Rognan, D. 2004 Comparative evaluation of eight docking tools for docking and virtual screening accuracyProteins 57 225Google Scholar
Jain, A. N. 2003 Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engineJ Med Chem 46 499Google Scholar
Ewing, T. J.Makino, S.Skillman, A. G.Kuntz, I. D. 2001 DOCK 4.0: search strategies for automated molecular docking of flexible molecule databasesJ Comput Aided Mol Des 15 411Google Scholar
Kuntz, I. D.Blaney, J. M.Oatley, S. J.Langridge, R.Ferrin, T. E. 1982 A geometric approach to macromolecule-ligand interactionsJ Mol Biol 161 269Google Scholar
Moustakas, D. T.Lang, P. T.Pegg, S.Pettersen, E.Kuntz, I. D.Brooijmans, N.Rizzo, R. C. 2006 Development and validation of a modular, extensible docking program: DOCK 5J Comput Aided Mol Des 20 601Google Scholar
Lang, P. T.Brozell, S. R.Mukherjee, S.Pettersen, E. F.Meng, E. C.Thomas, V.Rizzo, R. C.Case, D. A.James, T. L.Kuntz, I. D. 2009 DOCK 6: combining techniques to model RNA-small molecule complexesRNA 15 1219Google Scholar
Jones, G.Willett, P.Glen, R. C. 1995 Molecular recognition of receptor sites using a genetic algorithm with a description of desolvationJ Mol Biol 245 43Google Scholar
Jones, G.Willett, P.Glen, R. C.Leach, A. R.Taylor, R. 1997 Development and validation of a genetic algorithm for flexible dockingJ Mol Biol 267 727Google Scholar
Nissink, J. W.Murray, C.Hartshorn, M.Verdonk, M. L.Cole, J. C.Taylor, R. 2002 A new test set for validating predictions of protein-ligand interactionProteins 49 457Google Scholar
Verdonk, M. L.Chessari, G.Cole, J. C.Hartshorn, M. J.Murray, C. W.Nissink, J. W.Taylor, R. D.Taylor, R. 2005 Modeling water molecules in protein-ligand docking using GOLDJ Med Chem 48 6504Google Scholar
Verdonk, M. L.Cole, J. C.Hartshorn, M. J.Murray, C. W.Taylor, R. D. 2003 Improved protein-ligand docking using GOLDProteins 52 609Google Scholar
Hartshorn, M. J.Verdonk, M. L.Chessari, G.Brewerton, S. C.Mooij, W. T.Mortenson, P. N.Murray, C. W. 2007 Diverse, high-quality test set for the validation of protein-ligand docking performanceJ Med Chem 50 726Google Scholar
Cole, J. C.Nissink, J. W. N.Taylor, R. 2005 Protein-ligand docking and virtual screening with GOLDVirtual Screening in Drug DiscoveryShoichet, B. KAlvarez, JBoca Raton, FlaCRC Press
Meiler, J.Baker, D. 2006 ROSETTALIGAND: protein-small molecule docking with full side-chain flexibilityProteins 65 538Google Scholar
Davis, I. WBaker, D 2009 RosettaLigand docking with full ligand and receptor flexibilityJ Mol Biol 385 381Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×