Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T02:35:39.670Z Has data issue: false hasContentIssue false

4 - Antimalarial Agents and Their Targets

Published online by Cambridge University Press:  11 August 2009

Tag E. Mansour
Affiliation:
Stanford University, California
Get access

Summary

Before the basic principles of modern chemotherapy were established in the early part of the twentieth century large numbers of the known antiparasitic agents were adapted from ancient remedies. The rationale for using these agents was based on subjective observations of alleviating symptoms of the disease or, in the case of intestinal parasitic worms, evacuation of the parasites from patients. Once the biology of the parasites' life cycle was established and methods were devised to evaluate the effectiveness of the therapeutic agents, a more scientific approach was taken to assess the mechanism of action of these drugs using in vitro cultures or experimental animals.

Malaria remains the most challenging disease that afflicts humankind, both in prevalence and in the morbidity and mortality it causes. It is estimated that 300–500 million people in developing countries have acute infection. Of these, 1.5–2.7 million, mostly children, die every year. The disease is characterized by shaking chills, relapsing fever, mental or physical exhaustion, splenomegaly, and anemia. The disease is caused by four species of the genus Plasmodium (P. falciparum, P. vivax, P. malaria, and P. ovale). P. falciparum causes the most serious form of the disease. The vector for the parasite is a female mosquito of the genus Anopheles.

The infective stage of malaria, the sporozoite, is injected by the mosquito from its salivary gland while it is feeding on mammalian blood (Fig. 4.1).

Type
Chapter
Information
Chemotherapeutic Targets in Parasites
Contemporary Strategies
, pp. 58 - 89
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, R. H. Jr., Metelev, V., Rapaport, E. & Zamecnik, P. (1996). Inhibition of Plasmodium falciparum malaria using antisense oligodeoxynucleotides. Proc Natl Acad Sci USA, 93(1), 514–518CrossRefGoogle ScholarPubMed
Barker, R. H. Jr., Metelev, V., Coakley, A. & Zamecnik, P. (1998). Plasmodium falciparum: Effect of chemical structure on efficacy and specificity of antisense oligonucleotides against malaria in vitro. Exp Parasitol, 88(1), 51–59CrossRefGoogle ScholarPubMed
Bohle, S., Conklin, B., Cox, D., Madsen, S. & Paulson, S. (1994). Structural and spectroscopic studies of beta-hematin (the heme coordination polymer in malaria pigment). In P. Wisian-Neilson, H. Allcock, & K. Wynn (Eds.), Inorganic and Organometallic Polymers II: Advanced Materials and Intermediates (pp. 497–515). Washington, DC: Am. Chem. SocCrossRef
Bray, P. G. & Ward, S. A. (1998). A comparison of the phenomenology and genetics of multidrug resistance in cancer cells and quinoline resistance in Plasmodium falciparum. Pharmacol Ther, 77(1), 1–28CrossRefGoogle ScholarPubMed
Breton, C. & Pereira da Silva, L. (1993). Malaria proteases and red blood cell invasion. Parasitol Today, 9, 92–96CrossRefGoogle Scholar
Breton, C. B., Blisnick, T., Jouin, H., Barale, J. C., Rabilloud, T., Langsley, G. & Pereira da Silva, L. H. (1992). Plasmodium chabaudi p68 serine protease activity required for merozoite entry into mouse erythrocytes. Proc Natl Acad Sci USA, 89(20), 9647-9651CrossRefGoogle ScholarPubMed
Brobey, R. K., Sano, G., Itoh, F., Aso, K., Kimura, M., Mitamura, T. & Horii, T. (1996). Recombinant Plasmodium falciparum dihydrofolate reductase-based in vitro screen for antifolate antimalarials. Mol Biochem Parasitol, 81(2), 225–237CrossRefGoogle ScholarPubMed
Brown, G. (1962). The biosynthesis of folic acid. J Biol Chem, 237, 536–540Google ScholarPubMed
Carroll, C. D., Johnson, T. O., Tao, S., Lauri, G., Orlowski, M., Gluzman, I. Y., Goldberg, D. E. & Dolle, R. E. (1998a). Evaluation of a structure-based statine cyclic diamino amide encoded combinatorial library against plasmepsin II and cathepsin D. Bioorg Med Chem Lett, 8(22), 3203–3206CrossRefGoogle Scholar
Carroll, C. D., Patel, H., Johnson, T. O., Guo, T., Orlowski, M., He, Z. M., Cavallaro, C. L., Guo, J., Oksman, A., Gluzman, I. Y., Connelly, J., Chelsky, D., Goldberg, D. E. & Dolle, R. E. (1998b). Identification of potent inhibitors of Plasmodium falciparum plasmepsin II from an encoded statine combinatorial library. Bioorg Med Chem Lett, 8(17), 2315–2320CrossRefGoogle Scholar
Chou, A. C., Chevli, R. & Fitch, C. D. (1980). Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry, 19(8), 1543–1549CrossRefGoogle ScholarPubMed
Coombs, G. H. & Mottram, J. C. (1997). Parasite proteinases and amino acid metabolism: Possibilities for chemotherapeutic exploitation. Parasitology, 114(Suppl), S61–80Google ScholarPubMed
Cowman, A. (1988). The molecular basis of resistance to the sulfones, sulfonamides, and dihydrofolate reductase inhibitors. In I. Sherman (Ed.), Malaria – Parasite Biology, Pathogenesis and Protection (pp. 317–330). Washington, DC: American Society for Microbiology Press
Dorn, A., Stoffel, R., Matile, H., Bubendorf, A. & Ridley, R. G. (1995). Malarial haemozoin/beta-haematin supports haem polymerization in the absence of protein. Nature, 374(6519), 269–271CrossRefGoogle ScholarPubMed
Eggleson, K. K., Duffin, K. L. & Goldberg, D. E. (1999). Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J Biol Chem, 274(45), 32411-32417CrossRefGoogle ScholarPubMed
Elion, G. (1989). The purine path to chemotherapy. Science, 244, 41–47CrossRefGoogle Scholar
Foote, S. J., Thompson, J. K., Cowman, A. F. & Kemp, D. J. (1989). Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell, 57(6), 921–930CrossRefGoogle ScholarPubMed
Francis, S. E., Banerjee, R. & Goldberg, D. E. (1997). Biosynthesis and maturation of the malaria aspartic hemoglobinases plasmepsins I and II. J Biol Chem, 272(23), 14961–14968CrossRefGoogle ScholarPubMed
Francis, S. E., Sullivan, D. J. Jr. & Goldberg, D. E. (1997). Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol, 51, 97–123CrossRefGoogle ScholarPubMed
Francis, S. E., Gluzman, I. Y., Oksman, A., Knickerbocker, A., Mueller, R., Bryant, M. L., Sherman, D. R., Russell, D. G. & Goldberg, D. E. (1994). Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J, 13(2), 306–317Google ScholarPubMed
Garrett, C. E., Coderre, J. A., Meek, T. D., Garvey, E. P., Claman, D. M., Beverley, S. M. & Santi, D. V. (1984). A bifunctional thymidylate synthetase-dihydrofolate reductase in protozoa. Mol Biochem Parasitol, 11, 257–265CrossRefGoogle ScholarPubMed
Goldberg, D. E., Slater, A. F., Cerami, A. & Henderson, G. B. (1990). Hemoglobin degradation in the malaria parasite Plasmodium falciparum: An ordered process in a unique organelle. Proc Natl Acad Sci USA, 87(8), 2931–2935CrossRefGoogle Scholar
Goldberg, D. E., Sharma, V., Oksman, A., Gluzman, I. Y., Wellems, T. E. & Piwnica-Worms, D. (1997). Probing the chloroquine resistance locus of Plasmodium falciparum with a novel class of multidentate metal(III) coordination complexes. J Biol Chem, 272(10), 6567–6572CrossRefGoogle ScholarPubMed
Gottesman, M. M. & Pastan, I. (1993). Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem, 62, 385–427CrossRefGoogle ScholarPubMed
Guttmann, P. & Ehrlich, P. (1891). Uber die Wirking des Methyleneblau bei malaria. Berliner Klin Woch, 28, 953Google Scholar
Haque, T. S., Skillman, A. G., Lee, C. E., Habashita, H., Gluzman, I. Y., Ewing, T. J., Goldberg, D. E., Kuntz, I. D. & Ellman, J. A. (1999). Potent, low-molecular-weight non-peptide inhibitors of malarial aspartyl protease plasmepsin II. J Med Chem, 42(8), 1428–1440CrossRefGoogle ScholarPubMed
Hitchings, G. (1989). Nobel lecture in physiology or medicine – Year 1988. In Vitro Cell Dev Biol, 25, 303–309CrossRefGoogle ScholarPubMed
Klayman, D. L. (1985). Qinghaosu (artemisinin): An antimalarial drug from China. Science, 228(4703), 1049–1055CrossRefGoogle ScholarPubMed
Krogstad, D. J. & Schlesinger, P. H. (1986). A perspective on antimalarial action: Effects of weak bases on Plasmodium falciparum. Biochem Pharmacol, 35(4), 547–552CrossRefGoogle ScholarPubMed
Krogstad, D. J. & Schlesinger, P. H. (1987). Acid-vesicle function, intracellular pathogens, and the action of chloroquine against Plasmodium falciparum. N Engl J Med, 317(9), 542–549Google ScholarPubMed
Krungkrai, J., Webster, H. K. & Yuthavong, Y. (1989). De novo and salvage biosynthesis of pteroylpentaglutamates in the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol, 32(1), 25–37CrossRefGoogle ScholarPubMed
Macomber, P. B., O'Brien, R. L. & Hahn, F. E. (1966). Chloroquine: Physiological basis of drug resistance in Plasmodium berghei. Science, 152(727), 1374–1375CrossRefGoogle ScholarPubMed
Martin, S. K., Oduola, A. M. & Milhous, W. K. (1987). Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science, 235(4791), 899–901CrossRefGoogle ScholarPubMed
Mayer, R., Picard, I., Lawton, P., Grellier, P., Barrault, C., Monsigny, M. & Schrevel, J. (1991). Peptide derivatives specific for a Plasmodium falciparum proteinase inhibit the human erythrocyte invasion by merozoites. J Med Chem, 34(10), 3029–3035CrossRefGoogle ScholarPubMed
Meshnick, S. R., Taylor, T. E. & Kamchonwongpaisan, S. (1996). Artemisinin and the antimalarial endoperoxides: From herbal remedy to targeted chemotherapy. Microbiol Rev, 60(2), 301–315Google ScholarPubMed
Peterson, D. S., Walliker, D. & Wellems, T. E. (1988). Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci USA, 85(23), 9114–9118CrossRefGoogle ScholarPubMed
Rapaport, E., Misiura, K., Agrawal, S. & Zamecnik, P. (1992). Antimalarial activities of oligodeoxynucleotide phosphorothioates in chloroquine-resistant Plasmodium falciparum. Proc Natl Acad Sci USA, 89(18), 8577–8580CrossRefGoogle ScholarPubMed
Ring, C. S., Sun, E., McKerrow, J. H., Lee, G. K., Rosenthal, P. J., Kuntz, I. D. & Cohen, F. E. (1993). Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci USA, 90(8), 3583–3587CrossRefGoogle ScholarPubMed
Roggwiller, E., Fricaud, A. C., Blisnick, T. & Braun-Breton, C. (1997). Host urokinase-type plasminogen activator participates in the release of malaria merozoites from infected erythrocytes. Mol Biochem Parasitol, 86(1), 49–59CrossRefGoogle ScholarPubMed
Rosenthal, P. J. (1999). Proteases of protozoan parasites. Adv Parasitol, 43, 105–158CrossRefGoogle ScholarPubMed
Rosenthal, P. J., Lee, G. K. & Smith, R. E. (1993). Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J Clin Invest, 91(3), 1052–1056CrossRefGoogle ScholarPubMed
Rosenthal, P. J., Wollish, W. S., Palmer, J. T. & Rasnick, D. (1991). Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J Clin Invest, 88(5), 1467–1472CrossRefGoogle ScholarPubMed
Sanchez, C. P., Wunsch, S. & Lanzer, M. (1997). Identification of a chloroquine importer in Plasmodium falciparum. Differences in import kinetics are genetically linked with the chloroquine-resistant phenotype. J Biol Chem, 272(5), 2652–2658CrossRefGoogle ScholarPubMed
Schmitt, T. H., Frezzatti, W. A. Jr. & Schreier, S. (1993). Hemin-induced lipid membrane disorder and increased permeability: A molecular model for the mechanism of cell lysis. Arch Biochem Biophys, 307(1), 96–103CrossRefGoogle ScholarPubMed
Silva, A. M., Lee, A. Y., Gulnik, S. V., Maier, P., Collins, J., Bhat, T. N., Collins, P. J., Cachau, R. E., Luker, K. E., Gluzman, I. Y., Francis, S. E., Oksman, A., Goldberg, D. E. & Erickson, J. W. (1996). Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc Natl Acad Sci USA, 93(19), 10034–10039CrossRefGoogle ScholarPubMed
Slater, A. F. & Cerami, A. (1992). Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites [see comments]. Nature, 355(6356), 167–169CrossRefGoogle Scholar
Sullivan, D. J. Jr., Gluzman, I. Y., Russell, D. G. & Goldberg, D. E. (1996). On the molecular mechanism of chloroquine's antimalarial action. Proc Natl Acad Sci USA, 93(21), 11865–11870CrossRefGoogle ScholarPubMed
Trager, W. (1986). Living Together. New York: Plenum Press
Triglia, T. & Cowman, A. F. (1994). Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc Natl Acad Sci USA, 91(15), 7149–7153CrossRefGoogle ScholarPubMed
Triglia, T., Menting, J. G., Wilson, C. & Cowman, A. F. (1997). Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc Natl Acad Sci USA, 94(25), 13944–13949CrossRefGoogle ScholarPubMed
Wellems, T. E., Panton, L. J., Gluzman, I. Y., Rosario, V. E., Gwadz, R. W., Walker-Jonah, A. & Krogstad, D. J. (1990). Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross [see comments]. Nature, 345(6272), 253–255CrossRefGoogle Scholar
White, N. J. (1996). The treatment of malaria [see comments]. N Engl J Med, 335(11), 800–806CrossRefGoogle Scholar
WHO. (1996). P. falciparum Proteinases Inhibitor Development. Geneva: World Health Organization
Woods, D. (1962). The biochemical mode of action of the sulfonamide drugs. J Gen Microbiol, 92, 687–702CrossRefGoogle Scholar
Wu, Y., Kirkman, L. A. & Wellems, T. E. (1996). Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc Natl Acad Sci USA, 93(3), 1130–1134CrossRefGoogle ScholarPubMed
Wunsch, S., Sanchez, C. P., Gekle, M., Grosse-Wortmann, L., Wiesner, J. & Lanzer, M. (1998). Differential stimulation of the Na+/H+ exchanger determines chloroquine uptake in Plasmodium falciparum. J Cell Biol, 140(2), 335–345CrossRefGoogle ScholarPubMed
Zhang, Y. & Meshnick, S. R. (1991). Inhibition of Plasmodium falciparum dihydropteroate synthetase and growth in vitro by sulfa drugs. Antimicrob Agents Chemother, 35(2), 267–271CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×