Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T20:52:54.400Z Has data issue: false hasContentIssue false

3 - Energy Metabolism in Parasitic Helminths: Targets for Antiparasitic Agents

Published online by Cambridge University Press:  11 August 2009

Tag E. Mansour
Affiliation:
Stanford University, California
Get access

Summary

During the first half of the twentieth century studies on the biochemistry of energy production showed that there are great similarities among diverse species. The discoveries of complex pathways and the details of the enzymes involved encouraged biochemists to investigate the metabolism of many different parasites. Pharmacologists who were interested in the chemotherapy of these parasites looked at these studies as a way of finding reactions that are unique to the parasite and that the enzymes catalyzing these reactions could be targets for new antiparasitic agents.

Glucose and/or glycogen constitute the main sources of energy to produce ATP for parasitic helminths. When these parasites live in a milieu that is rich with sugars their metabolism is adapted to utilizing large amounts of glucose. They resort to the inefficient degradation of glucose through anaerobic metabolism, which produces only low levels of ATP plus excreted metabolic products such as lactic acid and/or fatty acids. The utilization of large amounts of glucose compensates for the inefficient nature of the parasites' anaerobic metabolism. Many antiparasitic agents owe their successful antiparasitic action to a selective inhibition of energy production by the parasite. A good understanding of the nature of different carbohydrate metabolic reactions in parasitic helminths is a solid basis for choosing appropriate targets for new chemotherapeutic agents.

Life Cycles of Representative Helminths

Although this chapter focuses on the adult stages of the parasites discussed, a brief description of the life cycles of three representative species is included.

Type
Chapter
Information
Chemotherapeutic Targets in Parasites
Contemporary Strategies
, pp. 33 - 57
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, P. & Bonse, G. (1986). Chemistry of anticestodal gents. In W. Campbell & R. Rew (Eds.), Chemostherapy of Parasitic Diseases (pp. 447–456). New York: Plenum PressCrossRef
Behm, C. A. & Bryant, C. (1980). Regulatory properties of a partially purified preparation of pyruvate kinase from Fasciola hepatica. Int J Parasitol, 10(2), 107–114CrossRefGoogle ScholarPubMed
Brazier, J. B. & Jaffe, J. J. (1973). Two types of pyruvate kinase in schistosomes and filariae. Comp Biochem Physiol [B], 44(1), 145–155Google ScholarPubMed
Bueding, E. (1950). Carbohydrate metabolism of Schistosoma mansoni. J Gen Physiol, 33, 475–495CrossRefGoogle ScholarPubMed
Bueding, E. & Fisher, J. (1982). Metabolic requirements of schistosomes. J Parasitol, 68(2), 208–212CrossRefGoogle ScholarPubMed
Bueding, E. & Mansour, J. (1957). The relationship between inhibition of phosphofructokinase activity and the mode of action of trivalent organic antimonials on Schistosoma mansoni. Brit J Pharmacol, 12, 159–165Google ScholarPubMed
Bueding, E. & Saz, H. J. (1968). Pyruvate kinase and phosphoenolpyruvate carboxykinase activities of Ascaris muscle, Hymenolepis diminuta and Schistosoma mansoni. Comp Biochem Physiol, 24(2), 511–518CrossRefGoogle ScholarPubMed
Carter, C. E. & Fairbairn, D. (1975). Multienzymic nature of pyruvate kinase during development of Hymenolepis diminuta (Cestoda). J Exp Zool, 194(2), 439–448CrossRefGoogle Scholar
Coles, G. (1973). The metabolism of schistosomes: A review. Int J Biochem, 4, 319–337CrossRefGoogle Scholar
Cunningham, M. L. & Fairlamb, A. H. (1995). Trypanothione reductase from Leishmania donovani. Purification, characterisation and inhibition by trivalent antimonials. Eur J Biochem, 230(2), 460–468CrossRefGoogle ScholarPubMed
Ding, J., Su, J. G. & Mansour, T. E. (1994). Cloning and characterization of a cDNA encoding phosphofructokinase from Schistosoma mansoni. Mol Biochem Parasitol, 66(1), 105–110CrossRefGoogle ScholarPubMed
Duran, E., Komuniecki, R. W., Komuniecki, P. R., Wheelock, M. J., Klingbeil, M. M., Ma, Y. C. & Johnson, K. R. (1993). Characterization of cDNA clones for the 2-methyl branched-chain enoyl-CoA reductase. An enzyme involved in branched-chain fatty acid synthesis in anaerobic mitochondria of the parasitic nematode Ascaris suum. J Biol Chem, 268(30), 22391–22396Google ScholarPubMed
Estey, S. J. & Mansour, T. E. (1987). Nature of serotonin-activated adenylate cyclase during development of Schistosoma mansoni. Mol Biochem Parasitol, 26(1–2), 47–59CrossRefGoogle ScholarPubMed
Estey, S. J. & Mansour, T. E. (1988). GTP binding regulatory proteins of adenylate cyclase in Schistosoma mansoni at different stages of development. Mol Biochem Parasitol, 30(1), 67–75CrossRefGoogle ScholarPubMed
Geary, T. G., Winterrowd, C. A., Alexander-Bowman, S. J., Favreau, M. A., Nulf, S. C. & Klein, R. D. (1993). Ascaris suum: Cloning of a cDNA encoding phosphoenolpyruvate carboxykinase. Exp Parasitol, 77(2), 155–161CrossRefGoogle ScholarPubMed
Gilman, A. G. (1989). The Albert Lasker Medical Awards. G proteins and regulation of adenylyl cyclase. J Am Med Soc, 262(13), 1819–1825Google ScholarPubMed
Ikuma, K., Makimura, M. & Murakoshi, Y. (1993). Inhibitory effect of bithionol on NADH-fumarate reductase in ascarides. Yakugaku Zasshi, 113(9), 663–669CrossRefGoogle ScholarPubMed
Iltzsch, M. H., Bieber, D., Vijayasarathy, S., Webster, P., Zurita, M., Ding, J. & Mansour, T. E. (1992). Cloning and characterization of a cDNA coding for the alpha-subunit of a stimulatory G protein from Schistosoma mansoni. J Biol Chem, 267(20), 14504–14508Google ScholarPubMed
Jaffe, J. J., McCormack, J. J. & Meymarian, E. (1971). Phosphofructokinase activity in particulate-free extracts of Trypanosoma (Trypanozoon) rhodesiense. Comp Biochem Physiol [B], 39(4), 775–788Google ScholarPubMed
Kamemoto, E. S. & Mansour, T. E. (1986). Phosphofructokinase in the liver fluke Fasciola hepatica. Purification and kinetic changes by phosphorylation. J Biol Chem, 261(9), 4346–4351Google ScholarPubMed
Kamemoto, E. S., Iltzsch, M. H., Lan, L. & Mansour, T. E. (1987). Phosphofructokinase from Fasciola hepatica: Activation by phosphorylation and other regulatory properties distinct from the mammalian enzyme. Arch Biochem Biophys, 258(1), 101–111CrossRefGoogle ScholarPubMed
Kemp, R. G. (1969). Allosteric properties of muscle phosphofructokinase. II. Kinetics of native and thiol-modified enzyme. Biochemistry, 8(11), 4490–4496CrossRefGoogle ScholarPubMed
Klein, R. D., Winterrowd, C. A., Hatzenbuhler, N. T., Shea, M. H., Favreau, M. A., Nulf, S. C. & Geary, T. G. (1992). Cloning of a cDNA encoding phosphoenolpyruvate carboxykinase from Haemonchus contortus. Mol Biochem Parasitol, 50(2), 285–294CrossRefGoogle ScholarPubMed
Komuniecki, R. & Komuniecki, P. (1995). Aerobic–anaerobic transitions in energy metabolism during the development of the parasitic nenatode Ascaris suum. In J. C. Boothroyd & R. Komuniecki (Eds.) Molecular Approaches to Parasitology (pp. 109–121). New York: Wiley-Liss
Komuniecki, R., Wack, M. & Coulson, M. (1983). Regulation of the Ascaris suum pyruvate dehydrogenase complex by phosphorylation and dephosphorylation. Mol Biochem Parasitol, 8(2), 165–176CrossRefGoogle ScholarPubMed
Komuniecki, R., Rhee, R., Bhat, D., Duran, E., Sidawy, E. & Song, H. (1992). The pyruvate dehydrogenase complex from the parasitic nematode Ascaris suum: Novel subunit composition and domain structure of the dihydrolipoyl transacetylase component. Arch Biochem Biophys, 296(1), 115–121CrossRefGoogle ScholarPubMed
Kulkarni, G., Rao, G. S., Srinivasan, N. G., Hofer, H. W., Yuan, P. M. & Harris, B. G. (1987). Ascaris suum phosphofructokinase. Phosphorylation by protein kinase and sequence of the phosphopeptide. J Biol Chem, 262(1), 32–34Google ScholarPubMed
Mahrenholz, A. M., Hefta, S. A. & Mansour, T. E. (1991). Phosphofructokinase from Fasciola hepatica: Sequence of the cAMP-dependent protein kinase phosphorylation site. Arch Biochem Biophys, 288(2), 463–467CrossRefGoogle ScholarPubMed
Mansour, J. M. & Mansour, T. E. (1986). GTP-binding proteins associated with serotonin-activated adenylate cyclase in Fasciola hepatica. Mol Biochem Parasitol, 21(2), 139–149CrossRefGoogle ScholarPubMed
Mansour, T. (1957). The effect of lysergic acid diethylamide, 5-hydroxytryptamine, and related compounds on the liver fluke Fasciola hepatica. Brit J Pharmacol, 12, 406–409Google ScholarPubMed
Mansour, T. & Bueding, E. (1954). The actions of antimonials on glycolytic enzymes of Schistosoma mansoni. Brit J Pharmacol Chemother, 9, 459–462CrossRefGoogle ScholarPubMed
Mansour, T. & Mansour, J. (1962). Effects of serotonin (5-hydroxytrypatmine) and adenosine 3′,5′-phosphate on phosphofructokinase from the liver fluke Fasciola hepatica. J Biol Chem, 237, 629–634Google Scholar
Mansour, T., Sutherland, E., Rall, T. & Bueding, E. (1960). The effect of serotonin (5-hydroxytryptamine) on the formation of adenosine 3′,5′-phosphate by tissue particles from the liver fluke, Fasciola hepatica. J Biol Chem, 235, 466–470Google ScholarPubMed
Mansour, T. E. (1972). Phosphofructokinase. Curr Top Cell Regul, 5, 1–46CrossRefGoogle ScholarPubMed
Mettrick, D. F. & Cho, C. H. (1981). Migration of Hymenolepis diminuta (Cestoda) and changes in 5-HT (serotonin) levels in the rat host following parenteral and oral 5-HT administration. Can J Physiol Pharmacol, 59(3), 281–286CrossRefGoogle ScholarPubMed
Northup, J. K. & Mansour, T. E. (1978). Adenylate cyclase from Fasciola hepatica. 1. Ligand specificity of adenylate cyclase-coupled serotonin receptors. Mol Pharmacol, 14(5), 804–819Google ScholarPubMed
Pasteur, L. (1861). Experiences et ues nouvelles sur la nature des fermentations. C R Acad Sci Paris, 52, 1260–1264Google Scholar
Rohrer, S. P., Saz, H. J. & Nowak, T. (1986). Purification and characterization of phosphoenolpyruvate carboxykinase from the parasitic helminth Ascaris suum. J Biol Chem, 261(28), 13049–13055Google ScholarPubMed
Saz, H. J. (1971). Anaerobic phosphorylation in Ascaris mitochondria and the effects of anthelmintics. Comp Biochem Physiol [B], 39(3), 627–637Google ScholarPubMed
Saz, H. J. (1981). Energy metabolisms of parasitic helminths: Adaptations to parasitism. Annu Rev Physiol, 43, 323–341CrossRefGoogle ScholarPubMed
Saz, H. J. & Dunbar, G. A. (1975). The effects of stibophen on phosphofructokinases and aldolases of adult filariids. J Parasitol, 61(5), 794–801CrossRefGoogle ScholarPubMed
Scheibel, L. W. & Saz, H. J. (1966). The pathway for anaerobic carbohydrate dissimilation in Hymenolepis diminuta. Comp Biochem Physiol, 18(1), 151–162CrossRefGoogle ScholarPubMed
Scheibel, L. W., Saz, H. J. & Bueding, E. (1968). The anaerobic incorporation of 32P into adenosine triphosphate by Hymenolepis diminuta. J Biol Chem, 243(9), 2229–2235Google ScholarPubMed
Setlow, B. & Mansour, T. E. (1970). Studies on heart phosphofructokinase. Nature of the enzyme desensitized to allosteric control by photo-oxidation and by acylation with ethoxyformic anhydride. J Biol Chem, 245(21), 5524–5533Google ScholarPubMed
Shoemaker, C. B., Reynolds, S. R., Wei, G., Tielens, A. G. & Harn, D. A. (1995). Schistosoma mansoni hexokinase: cDNA cloning and immunogenicity studies. Exp Parasitol, 80(1), 36–45CrossRefGoogle ScholarPubMed
Silverman, M. (1991). Structure and function of hexose transporters. Annu Rev Biochem, 60, 757–794CrossRefGoogle ScholarPubMed
Skelly, P. J. & Shoemaker, C. B. (1996). Rapid appearance and asymmetric distribution of glucose transporter SGPT4 at the apical surface of intramammalian-stage Schistosoma mansoni. Proc Natl Acad Sci USA, 93(8), 3642–3646CrossRefGoogle ScholarPubMed
Skelly, P. J., Kim, J. W., Cunningham, J. & Shoemaker, C. B. (1994). Cloning, characterization, and functional expression of cDNAs encoding glucose transporter proteins from the human parasite Schistosoma mansoni. J Biol Chem, 269(6), 4247–4253Google ScholarPubMed
Smyth, J. D. (1994). Introduction to Animal Parasitoloty (3rd ed.). Cambridge, England: Cambridge University Press
Song, H. & Komuniecki, R. (1994). Novel regulation of pyruvate dehydrogenase phosphatase purified from anaerobic muscle mitochondria of the adult parasitic nematode, Ascaris suum. J Biol Chem, 269(50), 31573–31578Google ScholarPubMed
Su, J.-G., Mansour, J. & Mansour, T. (1996). Purification, kinetics and inhibition by antimonials of recombinant phosphofructokinase from Schistosoma mansoni. Mol Biochem Parasitol, 81, 171–178CrossRefGoogle ScholarPubMed
Tejada, P., Sanchez-Moreno, M., Monteoliva, M. & Gomez-Banqueri, H. (1987). Inhibition of malate dehydrogenase enzymes by benzimidazole anthelmintics. Vet Parasitol, 24(3–4), 269–274CrossRefGoogle ScholarPubMed
Tielens, A. (1994). Energy generation in parasitic helminths. Parasitol Today, 10, 346–352CrossRefGoogle ScholarPubMed
Tielens, A. & Hellemond, J. (1998). The electron transport chain in anaerobically functioning eukaryotes. Biochim Biophys Acta, 1365, 71–78CrossRefGoogle ScholarPubMed
Tielens, A. G., Houweling, M. & Bergh, S. G. (1985). The effect of 5-thioglucose on the energy metabolism of Schistosoma mansoni in vitro. Biochem Pharmacol, 34(18), 3369–3373CrossRefGoogle ScholarPubMed
Tielens, A. G., Horemans, A. M., Dunnewijk, R., Meer, P. & Bergh, S. G. (1992). The facultative anaerobic energy metabolism of Schistosoma mansoni sporocysts. Mol Biochem Parasitol, 56(1), 49–57CrossRefGoogle ScholarPubMed
Tielens, A. G., Heuvel, J. M., Mazijk, H. J., Wilson, J. E. & Shoemaker, C. B. (1994). The 50-kDa glucose 6-phosphate-sensitive hexokinase of Schistosoma mansoni. J Biol Chem, 269(40), 24736–24741Google ScholarPubMed
Bossche, H. & Janssen, P. A. (1969). The biochemical mechanism of action of the antinematodal drug tetramisole. Biochem Pharmacol, 18(1), 35–42CrossRefGoogle ScholarPubMed
Hellemond, J. J., Luijten, M., Flesch, F. M., Gaasenbeek, C. P. & Tielens, A. G. (1996). Rhodoquinone is synthesized de novo by Fasciola hepatica. Mol Biochem Parasitol, 82(2), 217–226CrossRefGoogle ScholarPubMed
Oordt, B. E., Heuvel, J. M., Tielens, A. G. & Bergh, S. G. (1985). The energy production of the adult Schistosoma mansoni is for a large part aerobic. Mol Biochem Parasitol, 16(2), 117–126CrossRefGoogle ScholarPubMed
Whistler, R. L. & Lake, W. C. (1972). Inhibition of cellular transport processes by 5-thio-D-glucopyranose. Biochem J, 130(4), 919–925CrossRefGoogle ScholarPubMed
Younathan, E. S., Paetkau, V. & Lardy, H. A. (1968). Rabbit muscle phosphofructokinase. Reactivity and function of thiol groups. J Biol Chem, 243(7), 1603–1608Google ScholarPubMed
Zhong, C., Skelly, P. J., Leaffer, D., Cohn, R. G., Caulfield, J. P. & Shoemaker, C. B. (1995). Immunolocalization of a Schistosoma mansoni facilitated diffusion glucose transporter to the basal, but not the apical, membranes of the surface syncytium. Parasitology, 110(Pt 4), 383–394CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×