Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T02:04:35.328Z Has data issue: false hasContentIssue false

4 - Fluid–solid phase equilibria

Published online by Cambridge University Press:  05 April 2015

Roger-Marc Nicoud
Affiliation:
Ypso-Facto, Nancy, France
Get access

Summary

The roots

Introduction

With the expression “fluid–solid phase equilibria”, we refer to what is often designated in chromatography as “adsorption isotherms”. The latter term is so widely used that it can easily be used in an inappropriate way. In a chromatographic process, the interactions of solutes between fluid and solid phases can include mechanisms that can be different from adsorption, including ion exchange, ion or size exclusion, chemical equilibria in the fluid phase and complexation on the surface. In order to avoid confusion, we will use the general term “fluid–solid phase equilibria” and restrict the use of “adsorption isotherm” to situations where an adsorption mechanism is likely to be the predominant factor.

In addition, “adsorption isotherm” suggests that a single univariate function relates the fluid-phase concentration to the solid-phase concentration (lumped or not) of a given solute, provided that temperature is kept constant. This can be misleading. Certainly temperature must be kept constant, but pressure must be kept constant as well when working with supercritical fluids. The same applies to normality in ion exchange, as explained in Section 4.5. Additionally, when working with multi-solute mixtures, relating a given solute concentration in the solid phase (lumped or not) to solute concentration in the fluid phase requires that all other concentrations, not only temperature, must be kept constant.

In Chapter 1 we presented basic concepts for describing chromatographic systems as well as simple considerations for relating concentrations of solutes located in the fluid mobile phase and in the particles. Recall that the qualifier mobile is important, to make clear that the intragranular fluid is not part of the mobile fluid.

An important assumption that was made in Chapter 1 and that, unless otherwise specified, will be made throughout this book is the rigidity of solute molecules and the absence of conformational changes during their interaction with the chromatographic medium. Similarly, we assume that the chromatographic medium is not subject to structural changes upon interaction with the solutes.

Type
Chapter
Information
Chromatographic Processes
Modeling, Simulation, and Design
, pp. 139 - 215
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araujo, J., Rodrigues, R. and Mota, J. (2008), J. Chromatogr. A 1189, 302–313.
Bernardi, S., Getaz, G., Forrer, N. and Morbidelli, M. (2013), J. Chromatogr. A 1283, 46–52.CrossRef
Bolt, G. H. (1982). In G. H., Bolt, ed., Soil Chemistry. B: Physico-Chemical Models, 2nd edn., Elsevier Science.Google Scholar
Brooks, C. and Cramer, S. (1992), AIChE J. 38, 1969.CrossRef
Clavier, J. Y. (1995), Developpement du procédé de lit mobile simulé avec eluant supercritique, unpublished PhD thesis, INPL, Nancy.
Cornel, J., Tarafder, A., Katuso, S. and Mazzotti, M. (2010), J. Chromatogr. A 1217, 1934–1941.CrossRef
Dye, S. R., De Carli, J. P. and Carta, G. (1990), Ind. Eng. Chem. Res. 29(5), 849–857.CrossRef
Farnan, D., Frey, D. and Horvath, C. (2002), J. Chromatogr. A 959, 65–73.CrossRef
Flockerzi, D., Kaspereit, M. and Kienle, A. (2013), Chem. Eng. Sci. 104, 957–959.CrossRef
Frey, D. D. and Rodrigues, A. E. (1994), AIChE J. 40(1), 182–186.CrossRef
Fukuchi, K., Kobuchi, S. and Arai, Y. (1982), J. Chem. Eng. of Japan 15(4), 316–318.CrossRef
Goto, M. and McCoy, B. (2000), Chem. Eng. Sci. 55, 723–732.CrossRef
Gritti, F. and Guiochon, G. (2003), J. Colloid Interface Sci. 264(1), 43–59.CrossRef
Gritti, F., Piatkowski, W. and Guiochon, G. (2003), J. Chromatogr. 983, 51.CrossRef
Grosfils, V. (2009), Modelling and parametric estimation of simulated moving bed chromatographic processes. PhD thesis, Université Libre de Bruxelles.
Guan, H. and Guiochon, G. (1996), J. Chromatogr. A 731, 27–40.CrossRef
Guan-Sajonz, H., Guiochon, G., Davis, E., Gulakowski, K. and Smith, D. (1997), J. Chromatogr. A 773, 33–51.CrossRef
Guiochon, G., Felinger, A., Golshan-Shirazi, S. and Katti, A. M. (2006), Fundamentals of Preparative and Nonlinear Chromatography, Elsevier Academic Press.Google Scholar
Guiochon, G. and Tarafder, A. (2011), J. Chromatogr. A 1218, 1037–1114.
Guélat, B., Delegrange, L., Valax, P. and Morbidelli, M. (2013), J. Chromatogr. A 1298, 17–25.CrossRef
Heinonen, J., Rubiera Landa, H., Sainio, T. and Seidel-Morgenstern, A. (2012), Sep. Purif. Technol. 95, 235–247.CrossRef
Helfferich, F. G. (1962), Ion Exchange, McGraw-Hill.Google Scholar
Hill, T. L. (1960), Introduction to Statistical Thermodynamics, Addison-Wesley.Google Scholar
Ilic, M., Flocerzi, D. and Seidel-Morgenstern, A. (2010), J. Chromatogr. A 1217, 2132–2137.CrossRef
Jedrzejak, A., Gorius, A. and Tondeur, D. (1989), Chem. Eng. Sci. 44, 1315.CrossRef
Kacmarski, K. and Bellot, J. (2003), Acta Chromatogr. 13, 22–37.
Kaczmarski, K., Mori, M., Glod, B., Kowalska, T. and Tanaka, K. (2005), Acta Chromatogr. 15, 66–81.
Koter, K. and Terzyk, A. (2005), J. Colloid Interface Sci. 282, 335–339.CrossRef
Kvaalen, E., Neel, L. and Tondeur, D. (1985), Chem. Eng. Sci. 40, 1191–1204.CrossRef
Langmuir, I. (1918), J. Am. Chem. Soc. 40, 1361–1402.CrossRef
Le Van, M. D. and Vermeulen, T. (1981), J. Phys. Chem. 85(22), 3247–3250.
Lin, S., Blanco, R. and Karger, B. (1991), J. Chromatogr. 557(1–2), 369–82.CrossRef
Ma, Z., Katti, A. M., Lin, B. and Guiochon, G. (1990), J. Phys. Chem. 94(17), 6911–6922.CrossRef
Miyabe, K. and Guiochon, G. (2000), J. Chromatogr. A 866, 147–171.CrossRef
Myers, A. L. (1983), AIChE J. 29(4), 691–693.CrossRef
Myers, A. L. and Byington, S. (1986). In A. E., Rodrigues, ed., Ion Exchange: Science and Technology vol. 107 of NATO ASI Series, Series E: Applied Sciences, Martinus Nijhoff, pp. 119–145.Google Scholar
Myers, A. L. and Prausnitz, J. M. (1965), AIChE J. 11(1), 121–127.CrossRef
Nfor, B., Noverraz, M., Chilamkurthi, S. and Verhaert, P. (2010), J. Chromatogr. 1217, 6829–6850.CrossRef
Nicoud, R. M. (1987), Influence respective des facteurs thermodynamiques, hydrodynamiques et diffusionnels sur le fonctionnement des echangeurs d'ions Application a un procede d'echange ionique: Le Nymphea PhD thesis, Institut National Polytechnique de Lorraine, Nancy.
Nicoud, R. M. and Schweich, D. (1989), Water Resour. Res. 25(6), 1071–1082.CrossRef
Nicoud, R. M. and Seidel-Morgenstern, A. (1996), Isol. Purif. 2(3), 165–200.
Nowak, J., Gedicke, K., Antos, D., Piatkowski, W. and Seidel-Morgenstern, A. (2007), J. Chromatogr. A 1164(1–2), 224–234.CrossRef
Nowak, J., Poplewska, I., Antos, D. and Seidel-Morgenstern, A. (2009), J. Chromatogr. A 1216(50), 8697–8704.CrossRef
Ottiger, S., Kluge, J., Rajendran, A. and Mazzotti, M. (2007), J. Chromatogr. A 1162, 74–82.CrossRef
Pabst, T., Antos, D., Carta, G., Ramasubramanyan, N. and Hunter, A. (2008), J. Chromatogr. A 1181, 83–94.CrossRef
Pepper, K. W., Reichenberg, D. and Hale, D. K. (1952), J. Chem. Soc. 3129–3136.
Peterson, D. L. and Redlich, O. (1962), J. Chem.Eng.Data 7(4), 570–574.CrossRef
Radke, C. J. and Prausnitz, J. M. (1972), Ind. Eng. Chem. Fundam. 11(4), 445–451.CrossRef
Rajendran, A. (2012), J. Chromatogr. A 1250, 227–249.CrossRef
Rajendran, A., Gilkison, T. and Mazzotti, M. (2008), J. Sep. Sci. 31(8), 1279–1289.CrossRef
Rajendran, A., Krauchi, O., Mazzotti, M. and Morbidelli, M. (2005), J. Chromatogr. A 1092, 149–160.
Rearden, P., Sajonz, P. and Guiochon, G. (1998), J. Chromatogr. A 813, 1–9.CrossRef
Rubiera, L., Flockerzi, D. and Seidel-Morgenstern, A. (2013), AIChE J. 59(4), 1263–1277.
Ruthven, D. M. (1984), Principles of Adsorption and Adsorption Processes, John Wiley & Sons.Google Scholar
Sajonz, P., Kele, M., Zhong, G., Sellergen, B. and Guiochon, G. (1998), J. Chromatogr. A 810, 1–17.CrossRef
Saritha, N. and Madras, G. (2001), Chem. Eng. Sci. 56, 6511–6524.
Schmidt-Traub, H., Kaspereit, M., Engell, S., Susanto, A., Epping, A. and Jupke, A. (2012). In H., Schmidt-Traub, M., Schulte and A., Seidel-Morgenstern, eds., Preparative Chromatography, 2nd edn., Wiley-VCH, p. 425.CrossRefGoogle Scholar
Schweich, D., Jauzein, M. and Sardin, M. (1993a), Water Resour. Res. 29(3), 723–733.
Schweich, D., Jauzein, M. and Sardin, M. (1993b), Water Resour. Res. 29(3), 735–741.
Schweich, D. and Sardin, M. (1981), J. Hydr. 52, 1–33.
Seidel, A. (1989), Chem. Tech. 41, 525–530.
Seidel-Morgenstern, A. (2004), J. Chromatogr. A 1037, 255–272.CrossRef
Seidel-Morgenstern, A., Schmidt-Traub, H., Michel, M., Epping, A. and Jupke, A. (2012). In H., Schmidt-Traub, M., Schulte and A., Seidel-Morgenstern, eds., Preparative Chromatography, 2nd edn., Wiley-VCH, p. 321.Google Scholar
Strubinger, J. R. and Parcher, J. F. (1989), Anal. Chem. 61(9), 951–955.CrossRef
Suwanayuen, S. and Danner, R. P. (1980a), AIChE J. 26(1), 68–76.
Suwanayuen, S. and Danner, R. P. (1980b), AIChE J. 26(1), 76–82.
Tarafder, A. and Mazzotti, M. (2012), Chem. Eng. Technol. 35, 102–108.CrossRef
Tondeur, D., Kabir, H., Luo, A. and Granger, J. (1996), Chem.Eng.Sci. 51(15), 3781–3799.CrossRef
Toth, J. (1971), Acta Chim. Acad. Sci. Hung. 69(3), 311–328.
Toth, J. (2002), Adsorption: Theory, Modeling and Analysis, Marcel Dekker.Google Scholar
Vajda, P., Felinger, A. and Cavazzini, A. (2010), J. Chromatogr. A 1217, 5965–5970.CrossRef
Van Wasen, U. and Schneider, G. M. (1975), Chromatographia 8(6), 274–276.CrossRef
Wellhoefera, M., Sprinzla, W., Hahna, R. and Jungbauer, A. (2013), J. Chromatogr. A 1319, 107–117.
Whitley, R., Wachter, R., Liu, F. and Wang, L. (1989), J. Chromatogr. 465, 137–156.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×