Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T10:29:42.070Z Has data issue: false hasContentIssue false

7 - Simulating chromatographic columns

Published online by Cambridge University Press:  05 April 2015

Roger-Marc Nicoud
Affiliation:
Ypso-Facto, Nancy, France
Get access

Summary

The art of adapting complexity to needs, or the art of modeling the elephant.

Introduction

As stated in previous chapters, the behavior of chromatographic columns is governed by:

  1. • thermodynamic factors, describing the interactions of the solutes and carrier fluid components with the chromatographic medium at equilibrium, as well as possible equilibria in the fluid phase or solid phase

  2. • kinetic factors, describing how fast solutes move in the fluid and solid phases to reach an equilibrium state from a non-equilibrium state

  3. • hydrodynamic factors, describing how the fluid flows into the column.

We generally assume that these factors can be modeled independently of each other, with coupling occurring only at interfaces. This is a very useful postulate, which is the basis of classical chromatography modeling. From a theoretical standpoint, however, it might be subject to discussion: for highly porous particles, the distinction between hydrodynamics and internal transport occurring partially through convection is somewhat vague. In the case of gas adsorption, the adsorption of solutes on the solid may lead to hydrodynamic perturbations. This effect, called the sorption effect, has been described by (Valentin, 1981) and (Le Van et al., 1988). We will consider that these refinements are not required for our purposes, and, except as specified in Section 7.8, we will assume that the decoupling postulate applies between the above factors.

In the past decades, a lot of different more or less refined models have been proposed, and it is out of the scope of this book to review them all. Let us express that the different possible models differ by their representation of hydrodynamic, kinetic or thermodynamic contributions.

The simplest model 2 is the equilibrium model (PF–Equil in our terminology), which assumes plug flow without hydrodynamic dispersion and infinitely fast mass transfer, so that the moving fluid and lumped solid concentrations are in equilibrium. Presented in Chapter 3, this model can be used as a reference as it gives the average position of the fronts, which is independent of hydrodynamic dispersion and mass transfer limitations.

Type
Chapter
Information
Chromatographic Processes
Modeling, Simulation, and Design
, pp. 388 - 437
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amundson, N. R., Aris, R. and Swanson, R. (1965), Proc. R. Soc. London, Ser. A 286(1404), 129–139.CrossRef
Baciocchi, R., Mazzotti, M. and Morbidelli, M. (2004), J. Chromatogr. A 1024(1–2), 15–20.CrossRef
Baciocchi, R., Zenoni, G., Mazzotti, M. and Morbidelli, M. (2002), J. Chromatogr. A 944(1–2), 225–240.CrossRef
Breman, K., Campbell, S. and Petzold, L. (1989), Numerical Solution of Initial-Value Problems in Differential Algebraic Equations, Elsevier Science.Google Scholar
Carta, G. (1998), Chem. Eng. Sci. 43, 2877.CrossRef
Carta, G. and Cincotti, A. (1998), Chem. Eng. Sci. 53, 3483.CrossRef
Carta, G., Saunders, M. S., De Carli, J. P. and Vierow, J. B. (1988), AIChE Symp. Ser. 84, 54–61.
Costa, C. A. V., Rodrigues, A. E. and Loureiro, J. M. (1986). In A. E., Rodrigues, ed., Ion Exchange: Science and Technology, vol. 107 of NATO ASI Series, Series E: Applied Sciences, Martinus Nijhoff, pp. 227–254.Google Scholar
Craig, L. C. (1944), J. Biol. Chem. 155, 519–534.
Cruz, P., Santos, J., Magalhaes, F. and Mendes, A. (2005), Comput. Chem. Eng. 30, 83–98.CrossRef
Davankov, V. A. (1989), Chromatographia 27(9–10), 475–182.CrossRef
Ferziger, J. and Peric, M. (2002), Computational Methods for Fluid Dynamics, 3rd edn., Spring-Verlag.CrossRefGoogle Scholar
Finlayson, B. (1980), Nonlinear Analysis in Chemical Engineering, McGraw-Hill.Google Scholar
Golshan-Shirazi, S. and Guiochon, G. (1992a). In F., Dondi and G., Guiochon, eds., Theoretical Advancement in Chromatography and Related Separation Techniques, vol. 383 of NATO ASI Series, Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers, pp. 1–33.
Golshan-Shirazi, S. and Guiochon, G. (1992b), J. Chromatogr. A 603(1–2), 1–11.CrossRef
Grammont, P., Rothschild, W., Sauer, C. and Katsahian, J. (1986). In A. E., Rodrigues, ed., Ion Exchange: Science and Technology, vol. 107 of NATO ASI Series, Series E: Applied Sciences, Martinus Nijhoff, pp. 403–447.Google Scholar
Grosfils, V. (2009), Modelling and parametric estimation of simulated moving bed chromatographic processes. PhD thesis, Université Libre de Bruxelles.
Guiochon, G., Felinger, A., Golshan-Shirazi, S. and Katti, A. M. (2006), Fundamentals of Preparative and Nonlinear Chromatography, Elsevier Academic Press.Google Scholar
Guiochon, G., Golshan-Shirazi, S. and Jaulmes, A. (1988), Anal. Chem. 60(18), 1856–1866.CrossRef
Haag, J., Van de Wouwer, A., Lehoucq, S. and Saucez, P. (2001), Control Eng. Pract. 9, 921–928.CrossRef
Hasnat, A. and Jvekar, V. (1996), AIChE J. 42(1), 161–175.
Heinonen, J., Rubiera Landa, H., Sainio, T. and Seidel-Morgenstern, A. (2012), Sep. Purif. Technol. 95, 235–247.CrossRef
Hiester, N. K., Radding, S. B., Nelson, R. L. and Vermeulen, T. (1956), AIChE J. 2, 404–411.CrossRef
Hindmarsh, A. C., Brown, P. N., Grant, K. E., et al. (2005), ACM Trans. Math. Software 31(3), 363–396.CrossRef
Hoell, W. and Feuerstein, W. (1986), React. Polym., Ion Exch., Sorbents 4(2), 147–153.CrossRef
Javeed, S., Qamar, S., Seidel-Morgenstern, A. and Warnecke, G. (2011a), J. Chromatogr. A 1218, 7137–7146.CrossRef
Javeed, S., Qamar, S., Seidel-Morgenstern, A. and Warnecke, G. (2011b), Comput. Chem. Eng. 35, 2294–2305.CrossRef
Jung, M. and Schurig, V. (1992), J. Chromatogr. A 605(2), 161–166.CrossRef
Kaczmarski, K. and Antos, D. (1996), J. Chromatogr. A 756, 73–87.CrossRef
Le Van, M. D., Costa, C. A. V., Rodrigues, A. E., Bossy, A. and Tondeur, D. (1988), AIChE J. 34(6), 996–1005.
Le Van, M. D. and Vermeulen, T. (1984), AIChE Symp. Ser., 80, 34.
Lee, C. K., Yu, Q., Un Kim, S. and Wang, L. N.-H. (1989), J. Chromatogr. A 484, 29–59.CrossRef
Liapis, A. and Rippin, D. (1978), Chem. Eng. Sci. 33, 593.CrossRef
Ling, L. and Wang, N. (2014). In E., Grushka and N., Grinberg, eds., Advances in Chromatography, vol. 52, CRC Press.Google Scholar
Lu, Z., Loureiro, J. M., Le Van, M. D. and Rodrigues, A. E. (1992), Ind. Eng. Chem. Res. 31(6), 1530–1540.CrossRef
Ma, Z., Whitley, R. and Wang, N. (1996), AIChEJ. 42(5), 1244–1262.CrossRef
Martin, A. and Synge, R. (1941), Biochem. J. 35, 1358–1368.
Merciny, E., Desreux, J. F. and Fuger, J. (1986), Anal. Chim. Acta 189(2), 301–311.CrossRef
Moate, J. and Le Van, D. (2009), Chem. Eng. Sci. 64, 1178–1184.CrossRef
Morbidelli, M., Servida, A., Storti, G. and Carra, S. (1982), Ind. Eng. Chem. Fundam. 21(2), 123–131.
Morbidelli, M., Storti, G., Carra, S., Niederjaufner, G. and Pontoglio, A. (1984), Chem. Eng. Sci. 39, 384.CrossRef
Nagai, H. and Carta, G. (2004), Sep. Sci. Technol. 39(16), 3711–3738.
Nicoud, R. M., Jaubert, J.-N., Rupprecht, I. and Kinkel, J. N. (1996), Chirality 8(3), 234–243.3.0.CO;2-H>CrossRef
Nicoud, R. M. and Schweich, D. (1989), Water Resour. Res. 25(6), 1071–1082.CrossRef
Petzold, L. (1982). In Proceedings of the 10th IMACS World Congress, August 8–13, Montreal IMACS.Google Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1989), Numerical Recipes, Cambridge University Press.Google Scholar
Radeke, K. H., Ortlieb, H. J. and Gelbin, D. (1981), Chem. Eng. Sci. 36(1), 11–17.CrossRef
Raghavan, N. and Ruthven, D. (1983), AIChE J. 29(6), 922–925.CrossRef
Rajendran, A. (2012), J. Chromatogr. A 1250, 227–249.CrossRef
Rhee, H. K., Heerdt, E. D. and Amundson, N. R. (1970), Chem. Eng. J. 1(4), 279–290.
Rhee, H. K., Heerdt, E. D. and Amundson, N. R. (1972), Chem. Eng. J. 3, 22–34.
Rice, R. and Do, D. (1995), Applied Mathematics and Modeling for Chemical Engineers, John Wiley & Sons.Google Scholar
Rodrigues, A. E. (1974), J. Chromatography 102, 437–442.CrossRef
Rony, P. (1968), Sep. Sci. 3, 239.
Rouchon, P., Schonauer, M., Valentin, P. and Guiochon, G. (1987), Sep. Sci. Technol. 22(8–10), 1793–1833.CrossRef
Schiesser, W. (1991), The Numerical Methods of Lines: Integration of Partial Differential Equations, Academic Press.Google Scholar
Schmidt-Traub, H., Kaspereit, M., Engell, S., Susanto, A., Epping, A. and Jupke, A. (2012). In H., Schmidt-Traub, M., Schulte and A., Seidel-Morgenstern, eds., Preparative Chromatography, 2nd edn., Wiley-VCH, p. 425.CrossRefGoogle Scholar
Scott, D. M. (1991), Chem. Eng. Sci. 46(12), 2977–2982.CrossRef
Scott, D. M. (1993), Chem. Eng. Sci. 48(17), 3001–3006.
Seidel-Morgenstern, A., Schmidt-Traub, H., Michel, M., Epping, A. and Jupke, A. (2012). In H., Schmidt-Traub, M., Schulte and A., Seidel-Morgenstern, eds., Preparative Chromatography, 2nd edn., Wiley-VCH, p. 321.Google Scholar
Sereno, C., Rodrigues, A. E. and Villadsen, J. (1991), Comput. Chem. Eng. 15, 25–23.CrossRef
Sereno, C., Rodrigues, A. E. and Villadsen, J. (1992), Comput. Chem. Eng. 16, 583–592.CrossRef
Streat, M. (1986). In A. E., Rodrigues, ed., Ion Exchange: Science and Technology, vol. 107 of NATO ASI Series, Series E: Applied Sciences, Martinus Nijhoff, pp. 449–461.Google Scholar
Strelow, F. W. E. and Victor, A. H. (1990), S. Afr. J. Chem. 43(3–4), 127–130.
Sundaram, N. and Wankat, P. C. (1988), Chem. Eng. Sci. 43(1), 123–129.CrossRef
Valentin, P. (1981). In A. E., Rodrigues and D., Tondeur, eds., Percolation Processes Theory and Applications, vol. 33 of NATO ASI Series, Series E: Applied Sciences, Sijthoff & Noordhof, pp. 141–195.Google Scholar
Van Den Broeke, L. and Krishna, R. (1995), Chem. Eng. Sci. 50(16), 2507–2522.CrossRef
Villadsen, J. and Michelsen, M. (1978), Solution ofDifferential Equation Models by Polynomial Approximation, Prentice-Hall.Google Scholar
Weber, T. W. and Charkravorti, R. K. (1974), AIChE J. 20(2), 228–238.
Wenli, G., Wensheng, H. and Holl, W. (1994), Aqua 43, 95–101.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×