Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T09:17:13.321Z Has data issue: false hasContentIssue false

Part IV - Magnetic Resonance Imaging

Published online by Cambridge University Press:  10 June 2017

J. Christian Fox
Affiliation:
University of California, Irvine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Readings

Ahmed, S, Shellock, FG: Magnetic resonance imaging safety: implications for cardiovascular patients. J Cardiovasc Magn Reson 2007;3(3):171–82.Google Scholar
Blumenfeld, H: Neuroanatomy through clinical cases. Sunderland, MA: Sinauer Associates, 2002.Google Scholar
Chakeres, DW, Schmalbrock, P: Fundamentals of magnetic resonance imaging. Baltimore, MD: Williams & Wilkins, 1992.Google Scholar
Feast, R, Gledhill, M, Hurrell, M, Tremewan, R: Magnetic resonance imaging safety guidelines. Available at: www.nrl.moh.govt.nz/publications/1996-5.pdfGoogle Scholar
Guy, C, Ffytche, D: An introduction to the principles of medical imaging, revised ed. London: Imperial College Press, 2005.Google Scholar
Mitchell, DG, Cohen, MS: MRI principles, 2nd ed. Philadelphia: Saunders, 2004.Google Scholar
Mugler, JP III: Basic principles. In: Edelman, RR, Hesselink, JR, Zlatkin, MB, Crues, JV III (eds), Clinical magnetic resonance imaging, 3rd ed. Philadelphia: Saunders, 2006.Google Scholar
Nitz, W: Principles of magnetic resonance imaging and magnetic resonance angiography. In: Reimer, P, Parizel, PM, Stichnoth, FA (eds), Clinical MR imaging, 2nd ed. Berlin: Springer-Verlag, 2003.Google Scholar
Shellock, FG, Kanal, E, Society for Magnetic Resonance Imaging (SMRI) Safety Committee: SMRI report: policies, guidelines, and recommendations for MR imaging safety and patient management. J Magn Reson Imaging 1991;1:97101.Google Scholar

Suggested Readings

Allen, LM, Hasso, AN, Handwerker, J, Farid, H: Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics 2012;32(5):1285–97; discussion 97–9.Google Scholar
Avci, E, Fossett, D, Aslan, M, et al.: Branches of the anterior cerebral artery near the anterior communicating artery complex: an anatomic study and surgical perspective. Neurol Med Chir (Tokyo) 2003;43(7):329–33; discussion 333.CrossRefGoogle ScholarPubMed
Bloch, F, Hansen, WW, Packard, M: Nuclear induction. Phys Rev 1946;69(3–4):127.Google Scholar
Bradley, WG Jr.: MR appearance of hemorrhage in the brain. Radiology 1993;189(1):1526.CrossRefGoogle ScholarPubMed
Fleetwood, IG, Marcellus, ML, Levy, RP, et al.: Deep arteriovenous malformations of the basal ganglia and thalamus: natural history. J Neurosurg 2003;98(4):747–50.CrossRefGoogle ScholarPubMed
Fox, RJ, Rudick, RA: Multiple sclerosis: disease markers accelerate progress. Lancet Neurol 2004;3:10.Google Scholar
Jackson, EF, Ginsberg, LE, Schomer, DF, Leeds, NE: A review of MRI pulse sequences and techniques in neuroimaging. Surg Neurol 1997;47(2):185–99.Google Scholar
Kuker, W, Nägele, T, Schmidt, F, et al.: Diffusion-weighted MRI in herpes simplex encephalitis. Neuroradiology 2004;46(2):122–5.CrossRefGoogle ScholarPubMed
Osborn, A, Blaser, S, Salzman, K: Diagnostic imaging: Brain. Salt Lake City, UT: Amirsys, 2004.Google Scholar
Purcell, EM, Torrey, HC, Pound, RV: Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 1946;69(1–2):37–8.CrossRefGoogle Scholar
Schaefer, PW, Grant, PE, Gonzalez, RG: Diffusion-weighted MR imaging of the brain. Radiology 2000;217(2):331–45.CrossRefGoogle ScholarPubMed
Schellinger, PD, Fiebach, JB, Hoffmann, K, et al.: Stroke MRI in intracerebral hemorrhage: is there a perihemorrhagic penumbra? Stroke 2003;34(7):1674–9.Google Scholar
Tintinalli, J: Emergency medicine: a comprehensive study guide, 6th ed. New York: McGraw-Hill, 2004.Google Scholar
Tsuchiya, K, Katase, S, Yoshino, A, Hachiya, J: Diffusion-weighted MR imaging of encephalitis. AJR Am J Roentgenol 1999;173:1097–9.Google Scholar
Yousem, DM, Grossman, RI: Neuroradiology: the requisites. Philadelphia, PA: Mosby/Elsevier, 2010.Google Scholar

References

Chin, CT: Spine imaging. Semin Neurol 2002;22(2):205–20.Google Scholar
Tintinalli, J, Stapczynski, J, Ma, OJ, et al. (eds): Tintinalli’s emergency medicine: a comprehensive study guide, 6th ed. New York, NY: McGraw-Hill, 2004.Google Scholar
Van Goethem, JW, Maes, M, Ozsarlak, O, et al.: Imaging in spinal trauma. Eur Radiol 2005;15(3):582–90.Google Scholar
Burney, RE, Maio, RF, Maynard, F, Karunas, R: Incidence, characteristics, and outcome of spinal cord injury at trauma centers in North America. Arch Surg 1993;128(5):596–9.CrossRefGoogle ScholarPubMed
National Spinal Cord Injury Statistical Center (NSCIS): Spinal cord injury: facts and figures at a glance. J Spinal Cord Med 2011 Nov;34(6):620–1.Google Scholar
Farmer, JC, Vaccaro, AR, Balderston, RA, et al.: The changing nature of admissions to a spinal cord injury center: violence on the rise. J Spinal Disord 1998;11(5):400–3.Google Scholar
Vaccaro, AR, Kreidl, KO, Pan, W, et al.: Usefulness of MRI in isolated upper cervical spine fractures in adults. J Spinal Disord 1998;11(4):289–93.Google Scholar
Sances, A Jr, Myklebust, JB, Maiman, DJ, et al.: The biomechanics of spinal injuries. Crit Rev Biomed Eng 1984;11(1):176.Google Scholar
Bates, D, Ruggieri, P: Imaging modalities for evaluation of the spine. Radiol Clin North Am 1991;29(4):675–90.CrossRefGoogle ScholarPubMed
Daffner, RH, Hackney, DB: ACR appropriateness criteria on suspected spine trauma. J Am Coll Radiol 2007 Nov;4(11):762–75.Google Scholar
Orrison, WW Jr, Benzel, EC, Willis, BK, et al.: Magnetic resonance imaging evaluation of acute spine trauma. Emerg Radiol 1995;2(3):120–8.Google Scholar
Slucky, AV, Potter, HG: Use of magnetic resonance imaging in spinal trauma: indications, techniques, and utility. J Am Acad Orthop Surg 1998;6(3):134–45.CrossRefGoogle ScholarPubMed
Yamashita, Y, Takakoshi, M, Malosuno, Y, et al.: Acute spinal cord injury: magnetic resonance imaging correlated with myelopathy. Br J Radiol 1991;64:201–9.Google Scholar
Mhuircheartaigh, NN, Kerr, JM, Murray, JG: MR imaging of traumatic spinal injuries. SeminMusculoskelet Radiol 2006;10(4):293307.CrossRefGoogle ScholarPubMed
Benedetti, PF, Fahr, LM, Kuhns, LR, et al.: MR imaging findings in spinal ligamentous injury. AJR Am J Roentgenol 2000;175(3):661–5.Google Scholar
Daffner, RH, Hackney, DB: ACR appropriateness criteria on suspected spine trauma. J Am Coll Radiol 2007;4(11):762–75.Google Scholar
Kim, KY, Kim, YT, Lee, CS, et al.: Magnetic resonance imaging in the evaluation of the lumbar herniated intervertebral disc. Int Orthop 1993;17(4):241–4.Google Scholar
Forristall, RM, Marsh, HO, Pay, NT: Magnetic resonance imaging and contrast CT of the lumbar spine: comparison of diagnostic methods and correlation with surgical findings. Spine 1988;13(9):1049–54.Google Scholar
Janssen, ME, Bertrand, SL, Joe, C, Levine, MI: Lumbar herniated disk disease: comparison of MRI, myelography, and post-myelographic CT scan with surgical findings. Orthopedics 1994;17(2):121–7.CrossRefGoogle ScholarPubMed
Yousem, DM, Atlas, SW, Goldberg, HI, Grossman, RI: Degenerative narrowing of the cervical spine neural foramina: evaluation with high-resolution 3DFT gradient-echo MR imaging. Am J Neuroradiol 1991;12(2):229–36.Google Scholar
Steinborn, MM, Heuck, AF, Tiling, R, et al.: Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr Jan-Feb 1999;23(1):123–9.Google Scholar
Avrahami, E, Tadmor, R, Dally, O, Hadar, H: Early MR demonstration of spinal metastasis in patients with normal radiographs and CT and radionuclide bone scans. JCAT 1989;13(4):598602.Google Scholar
Baleriaux, DL, Neugroschl, C: Spinal and spinal cord infection. Eur Radiol 2004;14(Suppl 3):E7283.Google Scholar
Erdman, WA, Tamburo, F, Jayson, HT, et al.: Osteomyelitis: characteristics and pitfalls of diagnosis with MR imaging. Radiology 1991;180(2):533–9.Google Scholar
Unger, E, Moldofsky, P, Gatenby, R, et al.: Diagnosis of osteomyelitis by MR imaging. AJR Am J Roentgenol 1988;150(3):605–10.Google Scholar
Agosta, F, Absinta, M, Sormani, MP, et al.: In vivo assessment of cervical cord damage in MS patients: a longitudinal diffusion tensor MRI study. Brain Aug 2007;130:2211–9.Google Scholar
Traboulsee, AL, Li, DK: The role of MRI in the diagnosis of multiple sclerosis. Adv Neurol 2006;98:125–46.Google ScholarPubMed
Poser, CM, Brinar, VV: Diagnostic criteria for multiple sclerosis. Clin Neurol Neurosurg 2001;103(1):111.Google Scholar
Kidd, D, Thorpe, JW, Kendall, BE, et al.: MRI dynamics of brain and spinal cord in progressive multiple sclerosis. Ann Neurol 1992;32:643–50.Google Scholar
Bradley, WG: Use of gadolinium chelates in MR imaging of the spine. J Magn Reson Imaging 1997;7(1):3846.Google Scholar
Kanal, E, Borgstede, JP, Barkovich, AJ, et al.: American College of Radiology white paper on MR safety. AJR Am J Roentgenol 2002;178(6):1335–47.Google Scholar
Kanal, E, Shellock, FG: Patient monitoring during clinical MR imaging. Radiology 1992;185(3):623–9.Google Scholar
Schrader, R: Contrast material-induced renal failure: an overview. J Interv Cardiol 2005;18(6):417–23.Google Scholar
Pedersen, M: Safety update on the possible causal relationship between gadolinium-containing MRI agents and nephrogenic systemic fibrosis. J Magn Reson Imaging 2007;25(5):881–3.CrossRefGoogle ScholarPubMed
Aydingoz, U: The need for radiologists’ awareness of nephrogenic systemic fibrosis. Diagn Interv Radiol 2006;12(4):161–2.Google ScholarPubMed
American College of Radiology: Manual on contrast media, 7th ed. 2010.Google Scholar
Kanal, E, Borgstede, JP, Barkovich, AJ, et al.: American College of Radiology white paper on MR safety: 2004 update and revisions. AJR Am J Roentgenol 2004;182(5):1111–4.Google Scholar

References

Atalay, MK: Establishing a cardiac MRI program: problems, pitfalls, and limitations. J Am Coll Radiology 2005;2(9):740–8.Google Scholar
Smulders, MW, Kietselaer, BL, Das, M, et al.: The role of cardiovascular magnetic resonance imaging and computed tomography angiography in suspected non-ST-elevation myocardial infarction patients: design and rationale of the cardiovascular magnetic resonance imaging and computed tomography angiography (CARMENTA) trial. Am Heart J 2013;a66(6):968–75.Google Scholar
Earls, JP, Ho, VB, Foo, TK, et al.: Cardiac MRI: recent progress and continued challenges. J Magn Reson Imaging 2002;16:111–27.Google Scholar
Clements, H, Duncan, KR, Fielding, K, et al.: Infants exposed to MRI in utero have a normal paediatric assessment at 9 months of age. Br J Radiol 2000;73:190–4.Google Scholar
De Wilde, JP, Rivers, AW, Price, DL: A review of the current use of magnetic resonance imaging in pregnancy and safety implications for the fetus. Progr Biophys Molec Biol 2005;87:335–53.Google Scholar
American College of Radiology (ACR): ACR appropriateness criteria: acute chest pain – suspected aortic dissection. 2011. Available at: www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/AcuteChestPainSuspectedAorticDissection.pdfGoogle Scholar
Marx, JA: Rosen’s emergency medicine: concepts and clinical practice, 8th ed. St. Louis, MO: Mosby, 2014.Google Scholar
Schleyer, AM, Jarman, KM, Calver, P, et al.: Upper extremity deep vein thrombosis in hospitalized patients: a descriptive study. J Hosp Med 2014;9(1):4853.Google Scholar
Chang, J, Elam-Evans, LD, Berg, CJ, et al.: Pregnancy-related mortality surveillance – United States, 1991–99. MMWR Morb Mortal Wkly Rep 2003;52(SS-2):18.Google Scholar
Scarsbrook, AF, Evans, AL, Owen, AR, Glees, FV: Diagnosis of suspected venous thromboembolic disease in pregnancy. Clin Radiol 2006;61:112.Google Scholar
Winer-Muram, HT, Boone, JM, Brown, HL, et al.: Pulmonary embolism in pregnant patients: fetal radiation dose with helical CT. Radiology 2002;224:487–92.Google Scholar
American College of Radiology (ACR): ACR appropriateness criteria: acute chest pain – suspected pulmonary embolism. 2011. Available at: www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/AcuteChestPainSuspectedPulmonaryEmbolism.pdfGoogle Scholar
Raizner, AE: Indications for diagnostic procedures: topics in clinical cardiology. New York: Igaku-Shoin Medical, 1997.Google Scholar
Miller, CD, Hwang, W, Hoekstra, JW, et al.: Stress cardiac magnetic resonance imaging with observation unit care reduces cost for patients with emergent chest pain: a randomized trial. Ann Emerg Med 2009;56(3):209–19.Google Scholar
American College of Cardiology/American Heart Association (ACC/AHA): ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2004;110:588636.Google Scholar
Nienaber, CA, von Kodolitsch, Y, Nicolas, V, et al.: The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N Engl J Med 1993;328(1):19.Google Scholar
Sechtem, U, Pflugfelder, PW, Cassidy, MM: Mitral or aortic regurgitation: quantification of regurgitant volumes with cine MR imaging. Radiology 1988;167:425–30.Google Scholar
Shapiro, MD, Guarraia, DL, Moloo, J, Cury, RC: Evaluation of acute coronary syndromes by cardiac magnetic resonance imaging. Top Magn Reson Imaging 2008;19(1):2532.Google Scholar
Herfkens, RJ, Higgins, CB, Hricak, H, et al.: Nuclear magnetic resonance imaging of the cardiovascular system: normal and pathologic findings. Radiology 1983;147:749–59.Google Scholar
Shiga, T, Wajima, Z, Apfel, CC, et al.: Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection: systematic review and meta-analysis. Arch Intern Med 2006;166(13):1350–6.Google Scholar
Hiratzka, LF, Bakris, GL, Beckman, JA, et al.: 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease. Circulation 2010;121(13):e266369.Google Scholar
American College of Radiology (ACR): ACR appropriateness criteria: acute chest pain – acute nonspecific chest pain – low probability of coronary artery disease. 2011. Available at: www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/AcuteNonspecficChestPainLowProbabilityCoronaryArteryDisease.pdfGoogle Scholar
American College of Radiology (ACR): ACR appropriateness criteria: nontraumatic aortic disease. 2013. Available at: www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/NontraumaticAorticDisease.pdfGoogle Scholar
American College of Radiology (ACR): ACR appropriateness criteria: nonischemic myocardial disease with clinical manifestations. 2013. Available at: www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/NonischemicMyocardialDiseaseWithClinicalManifestations.pdfGoogle Scholar
Anderson, JL, Adams, CD, Antman, EM, et al.: 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;61(23):e179347.Google Scholar
Kluetz, PG, White, CS: Acute pulmonary embolism: imaging in the emergency department. Radiol Clin North Am 2006;44:259–71.Google Scholar
Stein, PD, Fowler, SE, Goodman, LR, et al.: Multidetector computed tomography for acute pulmonary embolism. N Engl J Med 2006;354(22):2317–27.Google Scholar
Stein, PD, Chenevert, TL, Fowler, SE, et al.: Gadolinium-enhanced magnetic resonance angiography for pulmonary embolism: a multicenter prospective study (PIOPED III). Ann Intern Med 2010;152(7):434–43, W142–3.Google Scholar
Ersoy, H, Goldhaber, SZ, Cai, T, et al.: Time-resolved MR angiography: a primary screening examination of patients with suspected pulmonary embolism and contraindications to administration of iodinated contrast material. AJR Am J Roentgenol 2007;188:1246–54.Google Scholar
Sievers, B, Elliott, MD, Hurwitz, LM, et al.: Rapid detection of myocardial infarction by subsecond, free-breathing delayed contrast-enhancement cardiovascular magnetic resonance. Circulation 2007;115:236–44.Google Scholar
Cury, RC, Shash, K, Nagurney, JT, et al.: Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation 2008;118(8):837–44.Google Scholar
Greenwood, JP, Maredia, N, Younger, JF, et al.: Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 2012;379(9814):453–60.Google Scholar
Constantine, G, Kesavan, S, Flamm, SD, Sivananthan, MU: Role of MRI in clinical cardiology. Lancet 2004;363:2162–71.Google Scholar
Coulden, R: State-of-the-art imaging techniques in chronic thromboembolic pulmonary hypertension. Proc Am Thorac Soc 2006;3:577–83.Google Scholar
Pedersen, MR, Fisher, MT, van Beek, EJR: MR imaging of the pulmonary vasculature – an update. Eur Radiol 2006;16:1374–86.Google Scholar
Stemerman, DH, Krinsky, GA, Lee, VS, et al.: Thoracic aorta: rapid black-blood MR imaging with half-Fourier rapid acquisition with or without electrocardiographic triggering. Radiology 1999;213:185–91.Google Scholar
Shellock, FG, Fischer, L, Fieno, DS: Cardiac pacemakers and implantable cardioverter defibrillators: in vitro magnetic resonance imaging evaluation at 1.5-tesla. J Cardiovasc Magn Reson 2007;9(1):2131.Google Scholar
Patel, MR, Albert, TS, Kandzari, DE, et al.: Acute myocardial infarction: safety of cardiac MR imaging after percutaneous revascularization with stents. Radiology 2006;240(3):674–80.Google Scholar
Centers for Disease Control and Prevention (CDC): Nephrogenic fibrosing dermopathy associated with exposure to gadolinium-containing contrast agents – St. Louis, Missouri, 2002–2006. MMWR Morb Mortal Wkly Rep 2007;56(7):137–41.Google Scholar

References

Noone, TC, Semelka, RC, Chaney, DM, Reinhold, C: Abdominal imaging studies: comparison of diagnostic accuracies resulting from ultrasound, computed tomography, and magnetic resonance imaging in the same individual. Magn Reson Imaging 2004;22(1):1924.Google Scholar
Lumachi, F, Tregnaghi, A, Zucchetta, P, et al.: Sensitivity and positive predictive value of CT, MRI and [123]I-MIBG scintigraphy in localizing pheochromocytomas: a prospective study. Nucl Med Commun 2006;27(7):583–7.CrossRefGoogle Scholar
Pedrosa, I, Levine, D, Eyvazzadeh, AD, et al.: MR imaging evaluation of acute appendicitis in pregnancy. Radiology 2006;238(3):891–9.Google Scholar
Huk, WJ, Gademann, G: Magnetic resonance imaging (MRI): method and early clinical experiences in diseases of the central nervous system. Neurosurg Rev 1984;7(4):259–80.CrossRefGoogle ScholarPubMed
U.S. Food and Drug Administration (FDA): Whole body scanning: what are the radiation risks from CT? 2007. Available at: www.fda.gov/cdrh/ct/risks.htmlGoogle Scholar
Hall, EJ: Scientific view of low-level radiation risks. Radiographics 1991;11(3):509–18.Google Scholar
Wang, PI, Chong, ST, Kielar, AZ, et al.: Imaging of pregnant and lactating patients: part 2, evidence-based review and recommendations. AJR Am J Roentgenol 2012 Apr;198(4):785–92.Google Scholar
Kanal, E, Borgstede, JP, Barkovich, AJ: American College of Radiology white paper on MR safety. AJR Am J Roentgenol 2002;178(6):1335–48.Google Scholar
Brenner, D, Elliston, C, Hall, E, Berdon, W: Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001;176(2):289–96.Google Scholar
McCaig, LF, Nawar, EW: National hospital ambulatory medical care survey: 2004 emergency department summary. Hyattsville, MD: National Center for Health Statistics, 2006:129.Google Scholar
Shea, JA, Berlin, JA, Escarce, JJ, et al.: Revised estimates of diagnostic test sensitivity and specificity in suspected biliary tract disease. Arch Intern Med 1994;154(22): 2573–81.Google Scholar
Park, MS, Yu, JS, Kim, YH, et al.: Acute cholecystitis: comparison of MR cholangiography and US. Radiology 1998;3:781–5.Google Scholar
Hkansson, K, Leander, P, Ekberg, O, Hkansson, H-O: MR imaging in clinically suspected acute cholecystitis: a comparison with ultrasonography. Acta Radiol Choledocholithiasis 2000;41(4):322–8.Google Scholar
Oto, A, Ernst, R, Ghulmiyyah, L, et al.: The role of MR cholangiopancreatography in the evaluation of pregnant patients with acute pancreaticobilliary disease. Br J Radiology 2009;82:279–85.Google Scholar
ACR: ACR Appropriateness Criteria Acute Pancreatitis. 1998 (amended 2013). Available at: www.acr.org/qualitysafety/~/~/media/2712288FE06B48A4B87F20E9C4B7D652.pdf.Google Scholar
Maurea, S, Caleo, O, Mollica, C, et al: Comparative diagnostic evaluation with MR cholangiopancreatography, ultrasonography and CT in patients with pancreatobiliary disease. Radiol Med 2009;114:390402.Google Scholar
Lalani, T, Couto, CA, Rosen, MP, et al.: ACR appropriateness criteria jaundice. J Am Coll Radiol. 2013 Jun;10(6):402–9.Google Scholar
Stimac, D, Miletic, D, Radic, M, et al.: The role of nonenhanced magnetic resonance imaging in the early assessment of acute pancreatitis. Am J Gastroenterol 2007;102(5):9971004.Google Scholar
Czakó, L: Diagnosis of early-stage chronic pancreatitis by secretin-enhanced magnetic resonance cholangiopancreatography. J Gastroenterol 2007;42(Suppl 17):113–17.Google Scholar
Pungpapong, S, Wallace, MB, Woodward, TA, et al.: Accuracy of endoscopic ultrasonography and magnetic resonance cholangiopancreatography for the diagnosis of chronic pancreatitis: a prospective comparison study. J Clin Gastroenterol 2007;41(1):8893.Google Scholar
Andriulli, A, Loperfido, S, Napolitano, G, et al.: Incidence rates of post-ERCP complications: a systematic survey of prospective studies. Am J Gastroenterol 2007;102(8):1781–8.Google Scholar
Chan, YL, Chan, AC, Lam, WW, et al.: Choledocholithiasis: comparison of MR cholangiography and endoscopic retrograde cholangiography. Radiology 1996;200(1):85–9.Google Scholar
Shanmugam, V, Beattie, GC, Yule, SR, et al.: Is magnetic resonance cholangiopancreatography the new gold standard in biliary imaging? Br J Radiol 2005;78(934):888–93.Google Scholar
Williams, EJ, Green, J, Beckingham, I, et al.: Guidelines on the management of common bile duct stones (CBDS). Gut 2008;57:1004–21.Google Scholar
Leeuwenburgh, MM, Wiarda, BM, Wiezer, MJ, et al.: Comparison of imaging strategies with conditional contrast-enhanced CT and unenhanced MR imaging in patients suspected of having appendicitis: a multicenter diagnostic performance study. Radiology 2013;268(1):135–43.Google Scholar
Pedrosa, I, Beddy, P, Pedrosa, I: MR imaging evaluation of acute appendicitis in pregnancy. Radiology 2006;238(3):891–9.Google Scholar
Terasawa, T, Blackmore, CC, Bent, S, Kohlwes, RJ: Systematic review: computed tomography and ultrasonography to detect acute appendicitis in adults and adolescents. Ann Intern Med 2004;141(7):537–46.Google Scholar
Oto, A, Ernst, RD, Ghulmiyyah, LM, et al.: MR imaging in the triage of pregnant patients with acute abdominal and pelvic pain. Abdom Imaging 2009;34(2):243–50.Google Scholar
Herliczek, TW, Swenson, DW, Mayo-Smith, WW: Utility of MRI after inconclusive ultrasound in pediatric patients with suspected appendicitis: retrospective review of 60 consecutive patients. AJR Am J Roentgenol 2013;200(5):969–73.Google Scholar
Rountas, C, Vlychou, M, Vassiou, K, et al.: Imaging modalities for renal artery stenosis in suspected renovascular hypertension: prospective intraindividual comparison of color Doppler US, CT angiography, GD-enhanced MR angiography, and digital substraction angiography. Ren Fail 2007;29(3):295302.Google Scholar
Pei, Y, Shen, H, Li, J, et al.: Evaluation of renal artery in hypertensive patients by unenhanced MR angiography using spatial labeling with multiple inversion pulses sequence and by CT angiography. AJR Am J Roentgenol 2012;199(5):1142–8.Google Scholar
ACR: ACR practice guideline for performing and interpreting magnetic resonance imaging (MRI). 2013, (amended 2014). Available at: www.acr.org/~/media/EB54F56780AC4C6994B77078AA1D6612.pdfGoogle Scholar
Shellock, FG: Biomedical implants and devices: assessment of magnetic field interactions with a 3.0-tesla MR system. J Magn Reson Imaging 2002;16(6):731–2.Google Scholar
Uppot, RN, Sahani, DV, Hahn, PF, et al.: Impact of obesity on medical imaging and image-guided intervention. AJR Am J Roentgenol 2007;188(2):433–40.Google Scholar
Pederson, M: Safety update on the possible causal relationship between gadolinium-containing MRI agents and nephrogenic systemic fibrosis. J Magn Reson Imaging 2007;25(5):881–3.Google Scholar
Grobner, T: Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 2006;21:1104–8.Google Scholar

References

Schrader, R: Contrast material-induced renal failure: an overview. J Interv Cardiol 2005;18:417–23.Google Scholar
Stacul, F: Reducing the risks for contrast-induced nephropathy. Cardiovasc Intervent Radiol 2005;28(Suppl 2):S1218.Google Scholar
Toprak, O, Cirit, M: Risk factors for contrast-induced nephropathy. Kidney Blood Press Res 2006;29:8493.Google Scholar
Thomsen, HS: How to avoid nephrogenic systemic fibrosis: current guidelines in Europe and the United States. Radiol Clin North Am. 2009 Sep;47(5):871–5.Google Scholar
Feldman, F, Staron, R, Zwass, A, et al.: MR imaging: its role in detecting occult fractures. Skeletal Radiol 1994;23:439–44.Google Scholar
Frihagen, F, Nordsletten, L, Tariq, R, et al.: MRI diagnosis of occult hip fractures. Acta Orthop 2005;76:524–30.Google Scholar
Memarsadeghi, M, Breitenseher, MJ, Schaefer-Prokop, C, et al.: Occult scaphoid fractures: comparison of multidetector CT and MR imaging–initial experience. Radiology 2006;240:169–76.Google Scholar
Verbeeten, KM, Hermann, KL, Hasselqvist, M, et al.: The advantages of MRI in the detection of occult hip fractures. Eur Radiol 2005;15:165–9.Google Scholar
Bencardino, JT, Rosenberg, ZS: Sports-related injuries of the wrist: an approach to MRI interpretation. Clin Sports Med 2006;25:409–32.Google Scholar
Campbell, SE: MRI of sports injuries of the ankle. Clin Sports Med 2006;25:727–62.Google Scholar
Chaipat, L, Palmer, WE: Shoulder magnetic resonance imaging. Clin Sports Med 2006;25:371–86.Google Scholar
Gehrmann, RM, Rajan, S, Patel, DV, et al.: Athletes’ ankle injuries: diagnosis and management. Am J Orthop 2005;34:551–61.Google Scholar
Hayes, CW, Coggins, CA: Sports-related injuries of the knee: an approach to MRI interpretation. Clin Sports Med 2006;25:659–79.Google Scholar
Kaplan, LJ, Potter, HG: MR imaging of ligament injuries to the elbow. Radiol Clin North Am 2006;44:583–94.Google Scholar
Meislin, R, Abeles, A: Role of hip MR imaging in the management of sports-related injuries. Magn Reson Imaging Clin N Am 2005;13:635–40.Google Scholar
Morag, Y, Jacobson, JA, Miller, B, et al.: MR imaging of rotator cuff injury: what the clinician needs to know. Radiographics 2006;26:1045–65.Google Scholar
Tuite, MJ, Kijowski, R: Sports-related injuries of the elbow: an approach to MRI interpretation. Clin Sports Med 2006;25:387408.Google Scholar
Zlatkin, MB, Rosner, J: MR imaging of ligaments and triangular fibrocartilage complex of the wrist. Radiol Clin North Am 2006;44:595623.Google Scholar
Pineda, C, Vargas, A, Rodriguez, AV: Imaging of osteomyelitis: current concepts. Infect Dis Clin North Am 2006;20:789825.Google Scholar
Struk, DW, Munk, PL, Lee, MJ, et al.: Imaging of soft tissue infections. Radiol Clin North Am 2001;39:277303.Google Scholar
Kanal, E, Shellock, FG: Patient monitoring during clinical MR imaging. Radiology 1992;185:623–9.Google Scholar
Kanal, E, Shellock, FG: MR imaging of patients with intracranial aneurysm clips. Radiology 1993;187:612–4.Google Scholar
White, LM, Buckwalter, KA: Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol 2002;6:517.Google Scholar
Hargreaves, BA, Worters, PW, Pauly, KB, et al.: Metal-induced artifacts in MRI. AJR. 2011; 197:547–55.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×