Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-16T22:58:33.840Z Has data issue: false hasContentIssue false

17 - Modeling Developmental Dyslexia across Languages and Writing Systems

from Part II - Cross-Linguistic Perspectives on Developmental Dyslexia

Published online by Cambridge University Press:  27 September 2019

Ludo Verhoeven
Affiliation:
Radboud Universiteit Nijmegen
Charles Perfetti
Affiliation:
University of Pittsburgh
Kenneth Pugh
Affiliation:
Yale University, Connecticut
Get access

Summary

Computational models of reading have played an important role in theorizing about developmental dyslexia. In particular, simulations of how children learn to read, based on Parallel Distributed Processing (PDP) principles, such as the triangle model (Seidenberg & McClelland, 1989) have been influential, because they hold the promise of explaining complex phenomena as emerging from a relatively simple set of assumptions. For example, Harm and Seidenberg (1999) demonstrated how lower-level perceptual difficulties that interfere with the formation of phonological categories can give rise to specific deficits observed in phonological dyslexia in English. The theory behind the triangle model is that reading skill emerges as a result of statistically driven learning of the mappings among the written and spoken forms of words and their meanings. At the computational level of analysis, this provides the basis for a universal model of reading across languages (e.g. Frost, 2012).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barca, L., Burani, C., Di Filippo, G., & Zoccolotti, P. (2006). Italian developmental dyslexic and proficient readers: Where are the differences? Brain and Language, 98, 347351. doi: http://dx.doi.org/10.1016/j.bandl.2006.05.001.CrossRefGoogle ScholarPubMed
Brown, M. C., Sibley, D. E., Washington, J. A. et al. (2015). Impact of dialect use on a basic component of learning to read. Frontiers in Psychology, 6, 196. doi: http://dx.doi.org/10.3389/fpsyg.2015.00196Google Scholar
Burani, C., Marcolini, S., De Luca, M., & Zoccolotti, P. (2008). Morpheme-based reading aloud: Evidence from dyslexic and skilled Italian readers. Cognition, 108, 243262. doi: http://dx.doi.org/10.1016/j.cognition.2007.12.010.CrossRefGoogle ScholarPubMed
Chang, L.-Y., Plaut, D. C., & Perfetti, C. A. (2016). Visual-orthographic complexity in learning to read.: Modeling learning across writing system variations. Scientific Studies of Reading, 20(1), 6485.CrossRefGoogle Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204256. doi: http://dx.doi.org/10.1037/0033-295X.108.1.204.Google Scholar
Davis, C. J. (2010). The spatial coding model of visual word identification. Psychological Review, 117(3), 713758. doi: http://dx.doi.org/10.1037/a0019738.Google Scholar
DeFrancis, J. (1989). Visible speech: The diverse oneness of writing systems. Honolulu, HI: University of Hawaii Press.CrossRefGoogle Scholar
Di Bono, M. G., & Zorzi, M. (2013). Deep generative learning of location-invariant visual word recognition. Frontiers in Psychology, 4, 635. doi: http://dx.doi.org/10.3389/fpsyg.2013.00635.Google Scholar
Frost, R. (2012). A universal approach to modeling visual word recognition and reading: Not only possible, but also inevitable. Behavioral and Brain Sciences, 35, 310329. doi: http://dx.doi.org/10.1017/S0140525X12000635.Google Scholar
Frost, R., Katz, L., & Bentin, S. (1987). Strategies for visual word recognition and orthographical depth: A multilingual comparison. Journal of Experimental Psychology: Human Perception & Performance, 13, 104115. doi: http://dx.doi.org/10.1037/0096–1523.13.1.104.Google ScholarPubMed
Glotin, H., Warnier, P., Dandurand, F. et al. (2010). An adaptive resonance theory account of the implicit learning of orthographic word forms. Journal of Physiology-Paris, 104, 1926. doi: http://dx.doi.org/10.1016/j.jphysparis.2009.11.003.Google Scholar
Grainger, J., & Van Heuven, W. (2003). Modeling letter position coding in printed word perception. In Bonin, P. (Ed.), The mental lexicon (pp. 124). New York, NY: Nova Science.Google Scholar
Hahn, U., & Bailey, T. M. (2005). What makes words sound similar? Cognition, 97, 227267. doi: http://dx.doi.org/10.1016/j.cognition.2004.09.006.Google Scholar
Harm, M. W., & Seidenberg, M. S. (1999). Phonology, reading, and dyslexia: Insights from connectionist models. Psychological Review, 163, 491528. doi: http://dx.doi.org/10.1037/0033-295X.106.3.491.Google Scholar
Harm, M. W., & Seidenberg, M. S. (2004). Computing the meanings of words in reading: Cooperative division of labor between visual and phonological processes. Psychological Review, 111, 662720. doi: http://dx.doi.org/10.1037/0033-295X.111.3.662.Google Scholar
Inhoff, A. W., & Wu, C. (2005). Eye movements and the identification of spatially ambiguous words during Chinese sentence reading. Memory & Cognition, 33, 13451356. doi: http://dx.doi.org/10.3758/BF03193367.CrossRefGoogle ScholarPubMed
Joanisse, M. F., & Seidenberg, M. S. (1998). Dissociations between rule-governed forms and exceptions: A connectionist account. Poster presented at the 1998 Annual Meeting of the Cognitive Neuroscience Society, San Francisco, CA.Google Scholar
Kang, H., & Simpson, G. B. (2001). Local strategic control of information in visual word recognition. Memory & Cognition, 29, 648655. doi: http://dx.doi.org/10.3758/BF03200466.CrossRefGoogle ScholarPubMed
Lerner, I., Armstrong, B. C., & Frost, R. (2014). What can we learn from learning models about sensitivity to letter-order in visual word recognition? Journal of Memory and Language, 77, 4058. doi: http://dx.doi.org/10.1016/j.jml.2014.09.002.Google Scholar
Li, Y., & Kang, J. (1993). Analysis of phonetics of the ideophonetic characters in modern Chinese. In Chen, Y. (Ed.), Information analysis of usage of characters in modern Chinese, 8498. Shanghai, China: Shanghai Education Press.Google Scholar
Lindgren, S. D., De Renzi, E., & Richman, L. C. (1985). Cross-national comparisons of developmental dyslexia in Italy and the United States. Child Development, 56, 14041417. doi: http://dx.doi.org/10.2307/1130460.Google Scholar
Lotto, A. J., & Holt, L. L. (2000). The illusion of the phoneme. In Billings, S. J., Boyle, J. P., & Griffith, A. M. (Eds.), Chicago linguistic society, Volume 35 (pp. 191204). Chicago, IL: Chicago Linguistic Society.Google Scholar
Malone, K. (1925). Benjamin Franklin on spelling reform. American Speech, 1, 96100. doi: http://dx.doi.org/ 10.2307/452554.Google Scholar
Manis, F. R., Seidenberg, M. S., Doi, L. M., McBride-Chang, C., & Peterson, A. (1996). On the basis of two subtypes of developmental dyslexia. Cognition, 58, 157–95. doi: http://dx.doi.org/10.1016/0010–0277(95)00679–6.Google Scholar
Mattingly, I. I. (1987). Morphological structure and segmental awareness. Cahiers de Psychologie, 7, 488493.Google Scholar
McBride-Chang, C., Cho, J.-R., Liu, H. et al. (2005). Changing models across cultures: Associations of phonological awareness and morphological structure awareness with vocabulary and word recognition in second graders from Beijing, Hong Kong, Korea, and the United States. Journal of Experimental Child Psychology, 92, 140160. doi: http://dx.doi.org/10.1016/j.jecp.2005.03.009.Google Scholar
McBride-Chang, C., Shu, H., Zhou, A., Wat, C. P., & Wagner, R. K. (2003). Morphological awareness uniquely predicts young children’s Chinese character recognition. Journal of Educational Psychology, 95, 743751. doi: http://dx.doi.org/10.1037/0022–0663.95.4.743.Google Scholar
McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88, 375407. doi: http://dx.doi.org/10.1037/0033-295X.88.5.375.Google Scholar
McClelland, J. L., Rumelhart, D. E., & PDP Research Group (Eds.). (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Volume 2: Psychological and biological models. Cambridge, MA: MIT Press.Google Scholar
Mirković, J., MacDonald, M. C., & Seidenberg, M. S. (2005). Where does gender come from? Evidence from a complex inflectional system. Language and Cognitive Processes, 20, 139167. doi: http://dx.doi.org/10.1080/01690960444000205.CrossRefGoogle ScholarPubMed
Mirković, J., Seidenberg, M. S., & MacDonald, M. C. (2011). Rules vs. statistics: Insights from a highly inflected language. Cognitive Psychology, 35, 638681. doi: http://dx.doi.org/10.1111/j.1551–6709.2011.01174.x.Google Scholar
Myers, J. (2010). Chinese as a natural experiment. The Mental Lexicon, 5, 421435. doi: http://dx.doi.org/10.1075/ml.5.3.09mye.CrossRefGoogle Scholar
Nag, S. (2011). The akshara languages: What do they tell us about children’s literacy learning? In Mishra, R. K. & Srinivasan, N. (Eds.), Language-cognition interface: State of the art (pp. 291310). Munich: Lincom Publishers.Google Scholar
Nag, S., & Snowling, M. J. (2012). Reading in an alphasyllabary: Implications for a language universal theory of learning to read. Scientific Studies of Reading, 16, 404423. doi: http://dx.doi.org/10.1080/10888438.2011.576352.Google Scholar
Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. E. (1996). Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review, 103, 56115. doi: http://dx.doi.org/10.1037/0033-295X.103.1.56.Google Scholar
Quine, W. V. (1951). Main trends in recent philosophy: Two dogmas of empiricism. The Philosophical Review, 60, 2043. doi: http://dx.doi.org/10.2307/2181906.Google Scholar
Raman, I., & Baluch, B. (2001). Semantic effects as a function of reading skill in word naming of a transparent orthography. Reading and Writing, 14, 599614. doi: http://dx.doi.org/10.1023/A:1012004729180.Google Scholar
Seidenberg, M. S., & Gonnerman, L. M. (2000). Explaining derivational morphology as the convergence of codes. Trends in Cognitive Sciences, 4, 353361. doi: http://dx.doi.org/10.1016/S1364-6613(00)01515–1.Google Scholar
Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recognition and naming. Psychological Review, 96, 523568. doi: http://dx.doi.org/10.1037/0033-295X.96.4.523.Google Scholar
Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences, 104, 64246429. doi: http://dx.doi.org/10.1073/pnas.0700622104.Google Scholar
Seymour, P. H. K., Aro, M., & Erskine, J. M. (2003). Foundation literacy acquisition in European orthographies. British Journal of Psychology, 94, 143174. doi: http://dx.doi.org/10.1348/000712603321661859.Google Scholar
Shu, H., McBride-Chang, C., Wu, S., & Liu, H. (2006). Understanding Chinese developmental dyslexia: Morphological awareness as a core cognitive construct. Journal of Educational Psychology, 98, 122133. doi: http://dx.doi.org/10.1037/0022–0663.98.1.122.Google Scholar
Shu, H., Meng, X., Chen, X., Luan, H., & Cao, F. (2005). The subtypes of developmental dyslexia in Chinese: Evidence from three cases dyslexia. Dyslexia, 11, 311329. doi: http://dx.doi.org/10.1002/dys.310.Google Scholar
Shu, H., Peng, H., & McBride-Chang, C. (2008). Phonological awareness in young Chinese children. Developmental Science, 11, 171181. doi: http://dx.doi.org/10.1111/j.1467–7687.2007.00654.x.Google Scholar
Sibley, D. E., & Kello, C. T. (2006). Learning representations of orthographic word forms. In Proceedings of the 27th annual meeting of the Cognitive Science Society. Vancouver, Canada.Google Scholar
Strain, E., Patterson, K., & Seidenberg, M. S. (1995). Semantic effects in single-word naming. Journal of Experimental Psychology: Learning, Memory and Cognition, 21, 11401154. doi: http://dx.doi.org/10.1037/0278–7393.21.5.1140.Google Scholar
Taft, M., & Zhu, X. (1995). The representation of bound morphemes in the lexicon: A Chinese study. In Feldman, L. B. (Ed.), Morphological aspects of language processing (pp. 293316). Hillsdale, NJ: Erlbaum.Google Scholar
Venezky, R. L. (1970). The structure of English orthography. The Hague: Mouton.Google Scholar
Venezky, R. L. (1999). The American way of spelling: The structure and origins of American English orthography. New York, NY: Guilford Press.Google Scholar
Washington, J. A., Terry, N. P., Seidenberg, M. S. et al. (2013). Language variation and literacy learning: The case of African American English. In Stone, C. A., Silliman, E. R., Ehren, B. J., & Wallach, G. P. (Eds.). Handbook of language and literacy: Development and disorders (pp. 204221). New York, NY: Guilford Press.Google Scholar
White, T. G., Graves, M. S., & Slater, W. H. (1990). Growth of reading vocabulary in diverse elementary schools: Decoding and word meaning. Journal of Educational Psychology, 82, 281290. doi: http://dx.doi.org/10.1037/0022–0663.82.2.281.Google Scholar
Xing, H., Shu, H., & Li, P. (2004). The acquisition of Chinese characters: Corpus analyses and connectionist simulations. Journal of Cognitive Science, 5, 149.Google Scholar
Yang, J. F., McCandliss, B. D., Shu, H., & Zevin, J. D. (2009). Simulating language-specific and language-general effects in a statistical learning model of Chinese reading. Journal of Memory & Language, 61, 238257. doi: http://dx.doi.org/10.1016/j.jml.2009.05.001.Google Scholar
Yang, J. F., McCandliss, B. D., Shu, H., & Zevin, J. D. (2013). Orthographic influences on division of labor in learning to read Chinese and English: Insights from computational modeling. Bilingualism Language and Cognition, 16, 354366. doi: http://dx.doi.org/10.1017/S1366728912000296.Google Scholar
Zhu, X. (1988). Analysis of cueing function of phonetic components in modern Chinese. In Yuan, X. (Ed.), Proceedings of the symposium on the Chinese language and characters (pp. 8599). Beijing: Guang Ming Daily Press (in Chinese).Google Scholar
Zoccolotti, P., De Luca, M., Di Pace, E. et al. (1999). Markers of developmental surface dyslexia in a language (Italian) with high grapheme–phoneme correspondence. Applied Psycholinguistics, 20, 191216. doi: http://dx.doi.org/10.1017/S0142716499002027.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×