Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T15:16:16.882Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2014

L. C. G. Rogers
Affiliation:
University of Bath
David Williams
Affiliation:
University of Bath
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abrahams, R. and Robbin, J.Transversal Mappings and Flows, Benjamin, New York, Amsterdam, 1967.Google Scholar
[1] Aizenmann, M. and Simon, B.Brownian motion and the Harnack inequality for Schrödinger operators, Comm. Pure and Appl. Math., 35, 209-273 (1982).CrossRefGoogle Scholar
[1] Albeverio, S., Blanchard, Ph. and Høegh-Krohn, R.Newtonian diffusions and planets, with a remark on non-standard Dirichlet forms and polymers, Stochastic Analysis and Applications: Lecture Notes in Mathematics 1095, Springer, Berlin, 1984, pp. 1–24.Google Scholar
[1] Albeverio, S., Fenstad, I. E., Hoegh-Krohn, R. and Lindström, T.Non-standard Methods in Probability and Mathematical Physics.
[1] Aldous, D.Stopping times and tightness, Ann. Prob., 6, 335–40 1978.CrossRefGoogle Scholar
[1] Ancona, A.Negatively curved manifolds, elliptic operators and Martin boundary (to appear).
[1] Arnold, L. and Wihstutz, V. (editors) Lyapunov Exponents (Proceedings): Lecture Notes in Mathematics 1186, Springer, Berlin, 1986.CrossRef
[1] Azema, J. and Yor, M.Une solution simple au problème de Skorokhod, Séminaire de Probabilités XIII: Lecture Notes in Mathematics 721, Springer, Berlin, 1979, pp. 90–115, 625–633.Google Scholar
[2] Azema, J. and Yor, M. (Editors) Temps locaux, Astérisque52-53, Société Mathématique de France, 1978.
[1] Azencott, Grandes déviations et applications, Ecole d'Été de Probabilités de Saint-Flour VIII: Lecture Notes in Mathematics 774, Springer, Berlin, 1980.
[1] Barlow, M. T.Study of a filtration expanded to include an honest time, Z. Wahrscheinlichkeitstheorie, 44, 307–323 1978.CrossRefGoogle Scholar
[2] Barlow, M. T.Decomposition of a Markov process at an honest time (unpublished).
[3] Barlow, M. T.One dimensional stochastic differential equation with no strong solution, J. London Math. Soc, 26, 335–347 1982.Google Scholar
[4] Barlow, M. T.On Brownian local time, Séminaire de Probabilités X V: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 189–190.Google Scholar
[1] Barlow, M. T., Jacka, S. and Yor, M.Inequalities for a pair of processes stopped at a random time, Proc. London Math. Soc, 52, 142–172 1986.Google Scholar
[2] Barlow, M. T., Jacka, S. and Yor, M.Inégalities pour un couple de processus arrêtés à un temps quelconque, C. R. Acad. Sci., 299, 351–354 1984.Google Scholar
[1] Barlow, M. T. And Perkins, E.One-dimensional stochastic differential equations involving a singular increasing process, Stochastics, 12, 229–249 1984.CrossRefGoogle Scholar
[2] Barlow, M. T. And Perkins, E.Strong existence, uniqueness and non-uniqueness in an equation involving local time, Séminaire de Probabilités X VII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983, pp. 32–66.Google Scholar
[1] Barlow, M. T. and Yor, M.(Semi-) martingale inequalities and local times, Z. Wahrscheinlichkeitstheorie, 55, 237–254 1981.CrossRefGoogle Scholar
[2] Barlow, M. T. and Yor, M.Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma and applications to local times, J. Funct. Anal., 49, 198–229 1982.CrossRefGoogle Scholar
[1] Bass, R. and Cranston, M.The Malliavin calculus for pure jump processes and applications to local time, Ann. Prob., 14, 490–532 1986.CrossRefGoogle Scholar
[1] Baxendale, P.Asymptotic behaviour of stochastic flows of diffeomorphisms; two case studies, Probab. Th. Rel. Fields, 73, 51–85 1986.CrossRefGoogle Scholar
[2] Baxendale, P.Moment stability and large deviations for linear stochastic differential equations,
[3] Baxendale, P.The Lyapunov spectrum of a stochastic flow of diffeomorphisms.CrossRef
[4] Baxendale, P.Brownian motions on the diffeomorphism group, I, Compos. Math., 53, 19-50 (1984).Google Scholar
[1] Baxendale, P. and Stroock, D. W.Paper on Lyapunov exponents (to appear).
[1] Bensoussan, A.Lectures on stochastic control, Nonlinear Filtering and Stochastic Control: Lecture Notes in Mathematics 972, Springer, Berlin, 1982, pp. 1–62.Google Scholar
[1] Benes, V. E., Shepp, L. A. and Witsenhausen, H. S.Some solvable stochastic control problems, Stochastics, 4, 39–83 1980.CrossRefGoogle Scholar
[1] Benveniste, A. and Jacod, J.Systèmes de Lévy des processus de Markov, Invent. Math., 21, 183–198 1973.CrossRefGoogle Scholar
[1] Berman, S. M.Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc, 137, 277–300 1969.CrossRefGoogle Scholar
[2] Berman, S. M.Harmonic analysis of local times and sample functions of Gaussian processes, Trans. Amer. Math. Soc, 143, 269–281 1969.CrossRefGoogle Scholar
[3] Berman, S. M.Gaussian processes with stationary increments: local times and sample function properties, Ann. Math. Statist., 41, 1260–1272 1970.CrossRefGoogle Scholar
[1] Bichteler, K.Stochastic integration and ZAtheory of semi-martingales, Ann. Prob., 9, 49-89 (1981).CrossRefGoogle Scholar
[1] Bichteler, K. and Fonken, D.A simple version of the Malliavin calculus in dimension one, Martingale Theory in Harmonic Analysis and Banach Spaces: Lecture Notes in Mathematics 939, Springer, Berlin, 1982, pp. 6–12.Google Scholar
[1] Bichteler, K. and Jacod, J.Calcul de Malliavin pour les diffusions avec sauts: Existence d'une densité dans le cas unidimensionnel, Séminaire de Probabilités X VII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983, pp. 132–157.Google Scholar
[1] Blllingsley, P.Ergodic Theory and Information, Wiley, New York, 1965.Google Scholar
[2] Blllingsley, P.Convergence of Probability Measures, Wiley, New York, 1968.Google Scholar
[3] Blllingsley, P.Conditional distributions and tightness, Ann. Prob., 2, 480–485 1974.Google Scholar
[1] Bingham, N. H. and Doney, R. A.On fluctuation theory in higher dimensions.
[1] Bishop, R. and Crittenden, R. J.Geometry of Manifolds, Academic Press, New York, 1964.Google Scholar
[1] Bismut, J.-M.Méchanique Aléatoire: Lecture Notes in Mathematics 866, Springer, Berlin, 1981.CrossRefGoogle Scholar
[2] Bismut, J.-M.Martingales, the Malliavin calculus and hypoellipticity under general Hormander's conditions, Z. Wahrscheinlichkeitstheorie, 56, 469–505 1981.CrossRefGoogle Scholar
[3] Bismut, J.-M.Calcul de variations stochastiques et processus de sauts Z. Wahrscheinlichkeitstheorie, 56, 469–505 1983.Google Scholar
[4] Bismut, J.-M.Large deviations and the Malliavin calculus, Progress in Math., Birkhauser, Boston, 1984.Google Scholar
[5] Bismut, J.-M.The Atiyah-Singer theorems; a probabilistic approach: I, The index theorem, J. Fund. Anal, 57, 56-98 (1984); II, The Lefschetz fixed-point formulas, J. Fund. Anal, 329-348.Google Scholar
[1] Bismut, J.-M. and Michel, D.Diffusions conditionnelles, I, II, J. Funct. Anal., 44, 174-211 (1981); 45,274-292(1981).CrossRefGoogle Scholar
[1] Blackwell, D. and Kendall, D. G.The Martin boundary for Polya's urn scheme and an application to stochastic population growth, J. Appl. Prob., 1, 284–296 1964.CrossRefGoogle Scholar
[1] Blumenthal, R. M. and Getoor, R. K.Markov Processes and Potential Theory, Academic Press, New York, 1968.Google Scholar
[1] Breiman, L.Probability, Addison-Wesley, Reading, Mass., 1968.Google Scholar
[1] Bremaud, P.Point Processes and Queues: Martingale Dynamics, Springer, New York, 1981.CrossRefGoogle Scholar
[1] Bourbaki, N.Topologie générale, in Eléments de Mathématique, Hermann, Paris, 1958, Chap. IX, 2nd edition.Google Scholar
[1] Bougerol, P. and Lacroix, J.Products of Random Matrices with Applications to Schrbdinger Operators, Birkhauser, Boston, 1985.CrossRefGoogle Scholar
[1] Burkholder, D.Distribution function inequalities for martingales, Ann. Prob., 1, 19–42 1973.CrossRefGoogle Scholar
[1] Carlen, E. A.Conservative diffusions, Comm. Math. Phys., 94, 293–315 1984.CrossRefGoogle Scholar
[2] Carlen, E. A.Potential scattering in quantum mechanics, Ann. Inst. H. Poincaré, 42, 407-428 (1985).Google Scholar
[1] Carverhill, A. P.Flows of stochastic dynamical systems: ergodic theory, Stochastics, 14, 273–318 1985.CrossRefGoogle Scholar
[2] Carverhill, A. P.A formula for the Lyapunov exponents of a stochastic flow. Application to a perturbation theorem, Stochastics, 14, 209–226 1985.CrossRefGoogle Scholar
[3] Carverhill, A. P.A ‘Markovian’ approach to the multiplicative ergodic (Oseledec) theorem for nonlinear stochastic dynamical systems.
[1] Carverhill, A. P., Chappell, M. J. and Elworthy, K. D.Characteristic exponents for stochastic flows, Proceedings, BIBOS I: Stochastic Processes.
[1] Carverhill, A. P. and Elworthy, K. D.Flows of stochastic dynamical systems; the functional analytic approach, Z. Wahrscheinlichkeitstheorie, 65, 245–268 1983.CrossRefGoogle Scholar
[1] Chaleyat-Maurel, MireilleLa condition d'hypoellipticité d'Hörmander, Astérisque, 84–85, 189-202 (1981).Google Scholar
[1] Chaleyat-Maurel, Mireille and El Karoui, NicoleUn problème de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur M, cas continu. In Azema and Yor [2], pp. 117–144.
[1] Cheeoer, J. and Ebin, D. G.Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, Oxford, New York, 1975.Google Scholar
[1] Chung, K. L.Markov Chains with Stationary Transition Probabilities, 2nd edition, Springer, Berlin, 1967.Google Scholar
[2] Chung, K. L.Probabilistic approach in potential theory to the equilibrium problem, Ann. Inst. Fourier, Grenoble, 23, 313–322 1973.CrossRefGoogle Scholar
[3] Chung, K. L.Excursions in Brownian motion, Ark. Mat., 14, 155–177 1976.CrossRefGoogle Scholar
[1] Chung, K. L. and Getoor, R. K.The condenser problem, Ann. Prob., 5, 82–86 1977.CrossRefGoogle Scholar
[1] Chung, K. L. and Walsh, J. B.To reverse a Markov process, Acta Math., 123, 225–251 1969.CrossRefGoogle Scholar
[2] Chung, K. L. and Walsh, J. B.Meyer's theorem on previsibility, Z. Wahrscheinlichkeitstheorie, 29, 253–256 1974.CrossRefGoogle Scholar
[1] Chung, K. L. and Williams, R. J.Introduction to Stochastic Integration, Birkhauser, Boston, 1983.CrossRefGoogle Scholar
[1] Ciesielski, Z. and Taylor, S. J.First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Am. Math. Soc, 103, 434–450 1962.CrossRefGoogle Scholar
[1] Çinlar, E., Jacod, J., Protter, P. and Sharpe, M. J.Semimartingales and Markov processes, Z. Wahrscheinlichkeitstheorie, 54, 161–220 1980.CrossRefGoogle Scholar
[1] Çinlar, E., Chung, K. L. and Getoor, R. K. (editors)Seminars on Stochastic Processes 1981, 1982, 1983,1984 (four volumes), Birkhäuser, Boston.
[1] Clark, J. M. C.The representation of functionals of Brownian motion by stochastic integrals, Ann. Math. Stat., 41, 1282-1295 (1970); 42, 1778 (1971).CrossRefGoogle Scholar
[2] Clark, J. M. C.An introduction to stochastic differential equations on manifolds, in Geometric Methods in Systems Theory (eds. D. Q., Mayne and R. W., Brockett), Reidel, Dordrecht, 1973.Google Scholar
[3] Clark, J. M. C.The design of robust approximations to the stochastic differential equations of nonlinear filtering, in Communication Systems and Random Process Theory (ed. J., Skwirzynski), Sijthoff and Noordhoff, Alphen an den Rijn, 1978.Google Scholar
[1] Clarkson, B. (editor) Stochastic problems in dynamics, Pitman, London, 1977.
[1] Cocozza, C. and Yor, M.Démonstration simplifiée d'un théorème de Knight, Séminaire de Probabilités XIV: Lecture Notes in Mathematics 721, Springer, Berlin, 1980, pp. 496–499.Google Scholar
[1] Cranston, M.Means of approach of two-dimensional Brownian motion (to appear in Ann. Probab).
[1] Cutland, N.Non-standard measure theory and its applications, Bull. London Math. Soc, 15, 529–589 1983.CrossRefGoogle Scholar
[1] Cutland, N. and Kendall, W. S.A non-standard proof of one of David Williams' splitting-time theorems, in D. G., Kendall [5], pp. 37–48.
[1] Darling, R. W. R.Martingales in manifolds-definition, examples, and behaviour under maps, Séminaire de Probabilités X VI Supplement: Lecture Notes in Mathematics 921, Springer, Berlin, 1982, pp. 217–236.Google Scholar
[1] Da Vies, E. B. and Simon, B.Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Fund. Anal. 59, 335-395 (1984).Google Scholar
[1] Davies, B.Picard's theorem and Brownian motion, Trans. Amer. Math. Soc, 213, 353–362 1975.Google Scholar
[1] Davis, M. H. A.On a multiplicative functional transformation arising in non-linear filtering theory, Z. Wahrscheinlichkeitstheorie, 54, 125–139 1980.CrossRefGoogle Scholar
[2] Davis, M. H. A.Pathwise non-linear filtering, in Stochastic Systems: the Mathematics of Filtering and Identification and Applications (eds. M., Hazewinkel and J. C., Willems), Reidel, Dordrecht, 1981.Google Scholar
[3] Davis, M. H. A.Some current issues in stochastic control theory, Stochastics.CrossRef
[1] Davis, M. H. A. and Varaiya, P.Dynamic programming conditions for partially observed stochastic systems, SI AM J. Control, 11, 226–261 1973.CrossRefGoogle Scholar
[1] Dawson, D. A. and Gärtner, J.Large deviations from the McKean-Vlasov limit for weakly-interacting diffusions, Stochastics, 20, 247–308 1987.Google Scholar
[1] Dellacherie, C.Capacités et Processus Stochastiques, Springer, Berlin, 1972.Google Scholar
[2] Dellacherie, C.Quelques exemples familiers en probabilités d'ensembles analytiques non-Boréliens, Séminaire de Probabilités XII: Lecture Notes in Mathematics, Springer, Berlin, 1978, pp. 742-745.CrossRefGoogle Scholar
[3] Dellacherie, C.Un survoi de la théorie de l'intégrale stochastique, Stock Proc. Appt., 10, 115–144 1980.Google Scholar
[1] Dellacherie, C., Doleans-Dade, Catherine, Letta, G. and Meyer, P.-A.Diffusions à coefficients continus d'après D. W. Stroock et S. R. S. Varadhan, Séminaire de probabilités IV: Lecture Notes in Mathematics 124, Springer, Berlin, 1970, pp. 241-282.Google Scholar
[1] Dellacherie, C. and Meyer, P. A.Probabilités et Potentiel, Chaps. I-VI, Hermann, Paris, 1975; Chaps. V-VIII, Hermann, Paris, 1980; Chaps. IX-XI, Hermann, Paris, 1983; Chapters XII-XVI (1987).Google Scholar
[1] De Witt-Morette, Cecile and Elworthy, K. D. (editors)New stochastic methods in physics, Physics Reports, 77, (3), 121-382 (1981).
[1] Doleans-Dade, CatherineExistence du processus croissant naturel associé à un potentiel de la classe (D), Z. Wahrscheinlichkeitstheorie, 9, 309–314 1968.Google Scholar
[2] Doleans-Dade, CatherineQuelques applications de la formule de changement de variables pour les semimartingales, Z. Wahrscheinlichkeitsth., 16, 181–194 1970.CrossRefGoogle Scholar
[1] Doleans-Dade, C. and Meyer, P. A.Equations différentielles stochastiques, Sém. de Probabilités XI: Lecture Notes in Mathematics 581, Springer, Berlin, 1977, pp. 376–382.Google Scholar
[1] Doob, J. L.Stochastic Processes, Wiley, New York, 1953.Google Scholar
[2] Doob, J. L.State-spaces for Markov chains, Trans. Am. Math. Soc, 149, 279–305 1970.CrossRefGoogle Scholar
[3] Doob, J. L.Classical Potential Theory and its Probabilistic Counterpart, Springer, New York, 1981.Google Scholar
[1] Doss, H.Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. Henri Poincaré B, 13, 99–126 1977.Google Scholar
[1] Dubins, L. and Schwarz, G.On continuous martingales, Proc Nat. Acad. Sci. USA, 53, 913–916 1965.CrossRefGoogle ScholarPubMed
[1] Dunford, N. and Schwartz, J. T.Linear operators: Part I, General Theory, Interscience, New York, 1958.Google Scholar
[1] Durrett, R.Brownian Motion and Martingales in Analysis, Wadsworth, Belmont, Ca., 1984.Google Scholar
[2] Durrett, R.(Editor) Particle systems, random media, large deviations, Contemporary Maths. 41, Amer. Math. Soc., Providence, RI, 1985.CrossRef
[1] Dynkin, E. B.Theory of Markov Processes, English translation, Pergamon Press, Oxford, 1960.Google Scholar
[2] Dynkin, E. B.Markov Processes, English translation in two volumes, Springer, Berlin, 1965.CrossRefGoogle Scholar
[3] Dynkin, E. B.Non-negative eigenfunctions of the Laplace-Beltrami operator and Brownian motion in certain symmetric spaces (in Russian), Doki. Akad. Naud SSSR, 141, 288-291 (1961).Google Scholar
[4] Dynkin, E. B.Diffusion of tensors, Dokl. Acad. Nauk. SSSR, 179, 1264–1267 1968.Google Scholar
[5] Dynkin, E. B.Local times and quantum fields, in Çinlar, Chung and Getoor [1, 1983].Google Scholar
[6] Dynkin, E. B.Gaussian and non-Gaussian random fields associated with Markov processes, J. Fund. Anal., 55, 344–376 1984.CrossRefGoogle Scholar
[7] Dynkin, E. B.Self-intersection local times, occupation fields and stochastic integrals, (to appear in Advances in Appl. Math.).
[1] Elliott, R. J.Stochastic Calculus and Applications, Springer, Berlin, 1982.Google Scholar
[1] Elliott, R. J. and Anderson, B. D. O.Reverse time diffusions, Stochastic Processes and their Applications, 19, 327–339 1985.CrossRefGoogle Scholar
[1] Elworthy, K. D.Stochastic Differential Equations on Manifolds, London Mathematical Society Lecture Note Series 20, Cambridge University Press, Cambridge, 1982.CrossRefGoogle Scholar
[2] Elworthy, K. D.(Editor) From local times to global geometry, control and physics, Proceedings, Warwick Symposium 1984/85, Longman, Harlow and Wiley, New York, 1986.
[1] Elworthy, K. D. and Stroock, D. W.Large deviation theory for mean exponents of stochastic flows, Appendix to Carverhill, Chappell and Elworthy [1].
[1] Elworthy, K. D. and Truman, A.Classical mechanics, the diffusion (heat) equation and the Schrödinger equation on a Riemannian manifold, J. Math. Phys., 22, (10), 2144-2166 (1981).CrossRefGoogle Scholar
[2] Elworthy, K. D. and Truman, A.The diffusion equation and classical mechanics: an elementary formula, in Stochastic processes in quantum theory and statistical physics (ed. S., Albeverio et al.), Lecture Notes in Physics, 173, Springer, Berlin, 1982, pp. 136–146.CrossRefGoogle Scholar
[1] Emery, M.Annoncabilité des temps previsibles: deux contre-exemples, Séminaire de Probabilités IV: Lecture Notes in Mathematics 784, Springer, Berlin, 1980, pp. 318–323.Google Scholar
[1] Ethier, S. N. and Kurtz, T. G.Markov Processes: Characterization and Convergence, Wiley, New York, 1986.CrossRefGoogle Scholar
[1] Feller, W.Introduction to Probability Theory and its Applications, Vol. 1, 2nd edn., Wiley, New York, 1957; Vol. 2, Wiley, New York, 1966.Google Scholar
[2] Feller, W.Boundaries induced by non-negative matrices, Trans. Am. Math. Soc., 83, 19-54 (1956).CrossRefGoogle Scholar
[3] Feller, W.On boundaries and lateral conditions for the Kolmogorov equations, Ann. Math., Ser. II, 65, 527-570 (1957).CrossRefGoogle Scholar
[4] Feller, W.Generalized second-order differential operators and their lateral conditions, Illinois J. Math., 1, 459–504 1957.Google Scholar
[1] Fleming, W. H. and Rishel, R. W.Deterministic and Stochastic Optimal Control, Springer, Berlin, 1975.CrossRefGoogle Scholar
[1] Föllmer, H.Calcul d'lto sans probabilités, Sem. de Probabilités X V: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 143–150.Google Scholar
[1] Freedman, D.Brownian Motion and Diffusion, Holden-Day, San Francisco, 1971.Google Scholar
[2] Freedman, D.Approximating Countable Markov Chains, Holden-Day, San Francisco, 1972.Google Scholar
[1] Friedman, A.Stochastic Differential Equations and Applications, in two volumes, Academic Press, New York, 1975.Google Scholar
[1] Fujisaki, M., Kallianpur, G. and Kunita, H.Stochastic differential equations for the non-linear filtering problem, Osaka J. Math., 9, 19–40 1972.Google Scholar
[1] Fukushima, M.Dirichlet Forms and Markov Processes, Kodansha, Tokyo, 1980.Google Scholar
[2] Fukushima, M.Basic properties of Brownian motion and a capacity on the Wiener space, J. Math. Soc. Japan, 36, 161–176 1984.CrossRefGoogle Scholar
[1] Garcia Alvarez, M. A. and Meyer, P. A.Une théorie de la dualité à un ensemble polaire près: I, Ann. Prob., 1, 207–222 1973.Google Scholar
[1] Garsia, A.Martingale Inequalities: Seminar Notes on Recent Progress, Benjamin, Reading, Ma., 1973.Google Scholar
[1] Geman, D. and Horowitz, J.Occupation densities, Ann. Prob., 8, 1–67 1980.CrossRefGoogle Scholar
[1] Geman, D., Horowitz, J. and Rosen, J.A local time analysis of intersections of Brownian paths in the plane, Ann. Prob., 12, 86–107 1984.CrossRefGoogle Scholar
[1] Getoor, R. K.Markov processes: Ray Processes and Right Processes: Lecture Notes in Mathematics 440, Springer, Berlin, 1975.CrossRefGoogle Scholar
[2] Getoor, R. K.Excursions of a Markov process, Ann. Prob., 8, 244–266 1979.Google Scholar
[3] Getoor, R. K.Splitting times and shift functionals Z. Wahrscheinlichkeitstheorie, 47, 69–81 1979.CrossRefGoogle Scholar
[1] Getoor, R. K. and Sharpe, M. J.Last exit times and additive functionals, Ann. Prob., 1, 550–569 1973.CrossRefGoogle Scholar
[2] Getoor, R. K. and Sharpe, M. J.Excursions of Brownian motion and Bessel process, Z. Wahrscheinlichkeitstheorie, 47, 83–106 1979.CrossRefGoogle Scholar
[3] Getoor, R. K. and Sharpe, M. J.Last exit decompositions and distributions, Indiana Univ. Math. J., 23, 377–404 1973.CrossRefGoogle Scholar
[4] Getoor, R. K. and Sharpe, M. J.Excursions of dual processes, Advances in Math., 45, 259–309 1982.CrossRefGoogle Scholar
[1] Gikhman, I.I., and Skorokhod, A. V.The Theory of Stochastic Processes (three volumes), Springer, Berlin, 1979.Google Scholar
[1] Gray, A., Karp, L. and Pinsky, M. A.The mean exit time from a ball in a Riemannian manifold.
[1] Gray, A. and Pinsky, M. A.The mean exit time from a small geodesic ball in a Riemannian manifold, Bull. Sc. Math., 107, 345–370 1983.Google Scholar
[1] Greenwood, P. and Pitman, J. W.Construction of local time and Poisson point processes from nested arrays, J. London Math. Soc. (2), 22, 182-192 (1980).Google Scholar
[2] Greenwood, P. and Pitman, J. W.Fluctuation identities for Levy processes and splitting at the maximum, Adv. Appl. Prob., 12, 893–902 1980.CrossRefGoogle Scholar
[1] Grenander, U.Probabilities on Algebraic Structures, Wiley, New York, 1963.Google Scholar
[1] Griffeath, D.Coupling methods for Markov processes, in Advances in Mathematics Supplementary Studies: Studies in Probability and Ergodic Theory, Vol. 2, Academic Press, New York, 1978, pp. 1–43.Google Scholar
[1] Gromov, M. and Rohlin, V. A.Russian Math. Surveys, 25, 1–57 1970.CrossRef
[1] Halmos, P.Measure Theory, Van Nostrand, Princeton, NJ, 1959.Google Scholar
[1] Haussmann, U.On the integral representation of Ito processes, Stochastics, 3, 17–27 1979.Google Scholar
[2] Haussmann, U.A stochastic maximum principle for optimal control of diffusions, Longman, Harlow, 1986.Google Scholar
[1] Hawkes, J.Multiple points for symmetric Levy processes, Math. Proc. Camb. Phil., 83, 83–90 1978.Google Scholar
[2] Hawkes, J.The measure of the range of a subordinator, Bull. London Math. Soc., 5, 21-28 (1973).CrossRefGoogle Scholar
[1] Hazewinkel, M. and WILLEMS, J. C. (editors)Stochastic Systems: the Mathematics of Filtering and Identification and Applications, Reidel, Dordrecht, 1981.CrossRef
[1] Helgason, S.Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.Google Scholar
[1] Hille, E. and Phillips, R. S.Functional Analysis and Semigroups, American Mathematical Society Colloquium Publications, Providence, RI, 1957.Google Scholar
[1] Holley, R., Stroock, D. W. and Williams, D.Applications of dual processes to diffusion theory, Proc. AMS Prob. Symp., Urbana, 1976, pp. 23–36.Google Scholar
[1] Hormander, L.Hypoelliptic second-order differential equations, Acta Math., 117, 147–171 1967.Google Scholar
[1] Hsu, P.On excursions of reflecting Brownian motion, Trans. Amer. Math. Soc., 296, 239-264 (1986).CrossRefGoogle Scholar
[2] Hsu, P.Brownian motion and the index theorem (to appear).
[1] Hunt, G. A.Markoff processes and potentials: I, II, III, Illinois J. Math., 1, 44-93; 316-369 (1957); 2, 151-213 (1958).Google Scholar
[1] Ikeda, N. and Watanabe, S.Stochastic Differential Equations and Diffusion Processes, North Holland-Kodansha, Amsterdam and Tokyo, 1981.Google Scholar
[2] Ikeda, N. and Watanabe, S.Malliavin calculus of Wiener functionals and its applications, in Elworthy [2], pp. 132–178.
[1] Itô, K.Stochastic integral, Proc. Imp. Acad. Tokyo, 20, 519–524 1944.CrossRefGoogle Scholar
[2] Itô, K.On a stochastic integral equation, Proc. Imp. Acad. Tokyo, 22, 32–35 1946.Google Scholar
[3] Itô, K.Stochastic differential equations in a differential manifold, Nagoya Math. J., 1, 35-47 (1950).CrossRefGoogle Scholar
[4] Itô, K.The Brownian motion and tensor fields on a Riemannian manifold, Proc. Intern. Congr. Math., Stockholm, 1963, pp. 536–539.Google Scholar
[5] Itô, K.Stochastic parallel displacement, in Probabilistic Methods in Differential Equations: Lecture Notes in Mathematics 451, Springer, Berlin, 1975, pp. 1–7.Google Scholar
[6] Itô, K.Poisson point processes attached to Markov processes, Proc. 6th Berkeley Symp. Math. Statist. Prob., Vol. 3, University of California Press, 1971, pp. 225–240.Google Scholar
[7] Itô, K.(editor) Proceedings of the 1982 Taniguchi Intern. Symp. on Stochastic Analysis, Kinokuniya-Wiley, 1984.
[1] Itô, K. and McKean, H. P.Diffusion Processes and their Sample Paths, Springer, Berlin, 1965.Google Scholar
[1] Jacka, S.A finite fuel stochastic control problem, Stochastics, 10, 103–113 1983.CrossRefGoogle Scholar
[2] Jacka, S.A local time inequality for martingales, Sem. de Probabilités X VII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983.Google Scholar
[1] Jacobsen, M.Splitting times for Markov processes and a generalised Markov property for diffusions, Z. Wahrscheinlichkeitstheorie, 30, 27–43 1974.CrossRefGoogle Scholar
[2] Jacobsen, M.Statistical Analysis of Counting Processes: Lecture Notes in Statistics 12, Springer, New York, 1982.CrossRefGoogle Scholar
[1] Jacod, J.A general theorem of representation for martingales, Proc. AMS Prob. Symp., Urbana, 1976, pp. 37–53.Google Scholar
[2] Jacod, J.Calcul Stochastique et Problèmes de Martingales: Lecture Notes in Mathematics 714, Springer, Berlin, 1979.CrossRefGoogle Scholar
[1] Jacod, J. and Yor, M.Etude des solutions extrémales et représentation intégrale des solutions pour certains problèmes de martingales, Z. Wahrscheinlichkeitsth., 38, 83–125 1977.CrossRefGoogle Scholar
[1] Jeulin, T.Semimartingales et Grossissement d'une Filtration: Lecture Notes in Mathematics 833, Springer, Berlin, 1980.CrossRefGoogle Scholar
[1] Jeulin, T. and Yor, M.Grossissement d'une filtration et semi-martingales: formules explicites, Séminaire de Probabilités XII: Lecture Notes in Mathematics 649, Springer, Berlin, 1978, pp. 78–97.Google Scholar
[2] Jeulin, T. and Yor, M.(editors) Grossissements de Filtrations: Examples et Applications: Lecture Notes in Mathematics 1118, Springer, Berlin, 1985.
[1] Johnson, G. and Helms, L. L.Class (D) supermartingales, Bull. Amer. Math. Soc, 69, 59–62 1963.CrossRefGoogle Scholar
[1] Kailath, T.An innovations approach to least squares estimation, Part I: Linear filtering with additive white noise, IEEE Trans. Automatic Control, 13, 646–655 1968.Google Scholar
[1] Kallianpur, G.Stochastic Filtering Theory, Springer, Berlin, 1980.CrossRefGoogle Scholar
[1] Kendall, D. G.Pole-seeking Brownian motion and bird navigation (with discussion), J. Roy. Statist. Soc. B, 36, 365-417 (1974).Google Scholar
[2] Kendall, D. G.The diffusion of shape, Adv. Appl. Prob., 9, 428–430 (1979).Google Scholar
[3] Kendall, D. G.Shape manifolds, Procrustean metrics, and complex projective spaces, Bull. London Math. Soc, 16, 81–121 1984.CrossRefGoogle Scholar
[4] Kendall, D. G.A totally unstable Markov process, Quarterly J. Math. Oxford, 9, (34), 149-160(1958).CrossRefGoogle Scholar
[5] Kendall, D. G. (Editor) Analytic and geometric stochastics (special supplement to Adv. Appl. Prob. to honour G. E. H. Reuter), Applied Prob. Trust, 1986.
[1] Kendall, D. G. and Reuter, G. E. H.Some pathological Markov processes with a denumerable infinity of states and the associated contraction semigroups of operators on l, Proc. Intern. Congress Math. 1954 (Amsterdam), 3, 377–415 (1956).Google Scholar
[1] Kendall, W. S.Knotting of Brownian motion in 3-space, J. London Math. Soc. (2), 19, 378-384 (1979).Google Scholar
[2] Kendall, W. S.Brownian motion, negative curvature, and harmonic maps. Stochastic Integrals: Lecture Notes in Mathematics 851, Springer, Berlin, 1981, pp. 479-491.Google Scholar
[3] Kendall, W. S.Brownian motion on a surface of negative curvature, Séminaire de probabilités XVIII: Lecture Notes in Mathematics 1059, Springer, Berlin, 1984, pp. 70-76.Google Scholar
[4] Kendall, W. S.Survey article on stochastic differential geometry (to appear).
[1] Kent, J.Some probabilistic properties of Bessel functions, Ann. Prob., 6, 760–770 1978.CrossRefGoogle Scholar
[2] Kent, J.The infinite divisibility of the von Mises-Fisher distribution for all values of the parameter in all dimensions. Proc. London Math. Soc., 3, (35), 359-384 (1977).Google Scholar
[1] Khasminskii, R. Z.Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations, Th. Prob. and Appl., 5, 179–196 1960.Google Scholar
[2] Khasminskii, R. Z.Stochastic stability of differential equations, Sijthoff and Noordhoff, Alphen aan den Rijn, 1980.CrossRefGoogle Scholar
[1] Kifer, Y.Brownian motion and positive harmonic functions on complete manifolds of non-positive curvature, in Elworthy [2], pp. 187–232.
[1] Kingman, J. F. C.Subadditive ergodic theory, Ann. Prob., 1, 883–909 1973.CrossRefGoogle Scholar
[2] Kingman, J. F. C.Completely random measures, Pacific J. Math., 21, 59–78 1967.CrossRefGoogle Scholar
[3] Kingman, J. F. C.Regenerative Phenomena, Wiley, New York, 1972.Google Scholar
[1] Knight, F. B.Note on régularisation of Markov processes, Illinois J. Math., 9, 548-552 (1965).Google Scholar
[2] Knight, F. B.A reduction of continuous square-integrable martingales to Brownian motion, in Martingales: a Report on a Meeting at Oberwolfach (ed. H. Dinges): Lecture Notes in Mathematics 190, Springer, Berlin, 1971, pp. 19-31.Google Scholar
[3] Knight, F. B.Random walks and the sojourn density process of Brownian motion, Trans. Amer. Math. Soc, 107, 56–86 1963.Google Scholar
[1] Knight, F. B. and Pittenger, A. O.Excision of a strong Markov process, Z. Wahrscheinlichkeitsth., 23, 114–120 1972.CrossRefGoogle Scholar
[1] Kobayashi, S. and Nomizu, K.Foundations of Differential Geometry, Wiley-Interscience, New York, 1969.Google Scholar
[1] Kozin, F. and Prodromou, S.Necessary and sufficient conditions for almost sure sample stability of linear Itô equations, SIAM J. Appl. Math., 21, 413–425 (1971).CrossRefGoogle Scholar
[1] Krylov, N. V.Controlled Diffusion Processes, Springer, New York, 1980.CrossRefGoogle Scholar
[1] Kuelbs, J.The law of the iterated logarithm for Banach space valued random variables, in Probability in Banach Spaces: Lecture Notes in Mathematics 526, Springer, Berlin, 1976, pp. 131–142.Google Scholar
[1] Kunita, H.On the decomposition of the solutions of stochastic differential equations, in Stochastic Integrals: Lecture Notes in Mathematics 851, Springer, Berlin, 1981, pp. 213–255.Google Scholar
[2] Kunita, H.On backward stochastic differential equations, Stochastics, 6, 293–313 1982.Google Scholar
[3] Kunita, H.Stochastic differential equations and stochastic flows of homeomorphisms.
[4] Kunita, H.Stochastic partial differential equations connected with nonlinear filtering, in Mitter and Moro [1].
[1] Kunita, H. and Watanabe, S.On square integrable martingales, Nagoya Math. J., 30, 209–245 1967.CrossRefGoogle Scholar
[1] Kunita, H. and Watanabe, T.Some theorems concerning resolvents over locally compact spaces, in Proc. 5th Berkeley Symp. Math. Statist. Prob., Vol. 2, Part 2, University of California Press, 1967, pp. 131–164.Google Scholar
[2] Kunita, H. and Watanabe, T.Markov processes and Martin boundaries, I, Illinois J. Math., 9, 485–526 1965.Google Scholar
[3] Kunita, H. and Watanabe, T.On certain reversed processes and their application to potential theory and boundary theory, J. Math. Mech., 15, 393–434 1966.Google Scholar
[1] Kusuoka, S. and Stroock, D.Applications of the Malliavin calculus, Part I, Proceedings of the 1982 Taniguchi Intern. Symp. on Stochastic Analysis (ed. K., Itô), Kinokuniya-Wiley, 1984, pp. 271–306.Google Scholar
[2] Kusuoka, S. and Stroock, D.Applications of the Malliavin calculus, Part II, J. Fac. Sci. U. of Tokyo (IA), 32, 1-76 (1985).Google Scholar
[1] Le Gall, J.-F.Applications du temps local aux equations différentielles stochastiques unidimensionelles, Séminaire de Probabilités X VII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983, pp. 15–31.Google Scholar
[2] Le Gall, J.-F.Sur la saucisse de Wiener et les points multiples du mouvement Brownien, Ann. Prob., 14, 1219–1244 1986.Google Scholar
[3] Le Gall, J.-F.Sur les temps local d'intersection du mouvement Brownien plan et la méthode de renormalization de Varadhan, Séminaire de Probabilités XIX: Lecture Notes in Mathematics 1123, Springer, Berlin, 1985, pp. 314–331.Google Scholar
[1] Lenglart, E., Lepingle, D. and Pratelli, M.Présentation unifiée de certaines inégalités de la théorie des martingales, Séminaire de Probabilités XIV: Lecture Notes in Mathematics 784, Springer, Berlin, 1980.Google Scholar
[1] Levy, P.Théorie de l'Addition des Variables Aléatoires, Gauthier Villars, Paris, 1954.Google Scholar
[2] Levy, P.Processus Stochastiques et Mouvement Brownien, Gauthier Villars, Paris, 1965.Google Scholar
[3] Levy, P.Systèmes markoviens et stationnaires. Cas dénombrable, Ann. Ecole Norm. Sup. (3), 68, 327-381 (1951); 69, 203-212 (1952).Google Scholar
[4] Levy, P.Processus markoviens et stationnaires due cinquième type (infinité dénombrable des états possibles, paramètre continu). C. R. Acad. Sci. Paris, 236, 1630–1632 1953.Google Scholar
[5] Levy, P.Processus markoviens et stationnaires. Cas dénombrable. Ann. Inst H. Poincaré, 16, 7–25 1958.Google Scholar
[1] Lewis, J. T.Brownian motion on a submanifold of Euclidean space, Bull. London Math. Soc., 18, 616–20 1986.CrossRefGoogle Scholar
[1] Liggett, T.Interacting Particle Systems, Springer, New York, 1985.CrossRefGoogle Scholar
[1] Lindvall, T.On coupling of diffusion processes, J. Appl. Probab., 20, 82–93 1983.CrossRefGoogle Scholar
[1] Lipster, R. S. and Shiryayev, A. N.Statistics of Random Processes, I (English translation), Springer, Berlin, 1977.Google Scholar
[1] London, R. R., McKean, H. P., Rogers, L. C. G. and Williams, D.A martingale approach to some Wiener-Hopf problems, I, Séminaire de Probabilités XVI: Lecture Notes in Mathematics 920, Springer, Berlin, 1982, pp. 41–67.Google Scholar
[1] Lyons, T. J.Finely holomorphic functions, J. Funct. Anal., 37, 1–18 1980.CrossRefGoogle Scholar
[2] Lyons, T. J.Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains, (to appear).
[3] Lyons, T. J.The critical dimension at which quasi-every path is self-avoiding, in D. G., Kendall [5], pp. 87–100.
[1] Lyons, T. J. and McKean, H. P.Windings of the plane Brownian motion. Adv. Math., 51, 212–225 1984.CrossRefGoogle Scholar
[1] Maisonneuve, B.Systèmes régéneratifs, Asterique, 15, Société Mathématique de France, 1974.Google Scholar
[1] Maisonneuve, B. and Meyer, P.-A.Ensembles aléatoires markoviens homogènes, in Séminaire de probabilités VIII: Lecture Notes in Mathematics 381, Springer, Berlin, 1974, pp. 172–261.Google Scholar
[1] Malliavin, P.Stochastic calculus of variation and hypo-elliptic operators, Proc. Intern. Symp. Stoch. Diff. Equations, Kyoto, 1976 (ed. K., Itô), Kinokuniya-Wiley, 1978, pp, 195-263.Google Scholar
[2] Malliavin, P.Ck-hypoellipticity with degeneracy, in Stochastic Analysis (ed. A., Friedman and M., Pinsky), Academic Press, New York, 1978, pp. 199-214.Google Scholar
[3] Malliavin, P.Formule de la moyenne, calcul de perturbations et théorèmes d'annulation pour les formes harmoniques, J. Funct. Anal., 17, 274–291 1974.CrossRefGoogle Scholar
[1] Malliavin, M. P. and Malliavin, P.Factorisations et lois limites de la diffusion horizontale au dessus d'un espace riemmanien symmetrique, Lecture Notes in Mathematics 404, Springer, Berlin, 1974, pp. 166–217.Google Scholar
[1] Martin, R. S.Minimal positive harmonie functions, Trans. Am. Math. Soc, 49, 137–164 1941.CrossRefGoogle Scholar
[1] McGill, P.Calculation of some conditional excursion formulae, Z. Wahrscheinlichkeitstheorie, 61, 255–260 1982.CrossRefGoogle Scholar
[2] McGill, P.Markov properties of diffusion local time: a martingale approach, Adv. Appl. Prob., 14, 789–810 1980.Google Scholar
[3] McGill, P.Integral representation of martingales in the Brownian excursion filtration, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 465–502.Google Scholar
[1] McKean, H. P.Stochastic Integrals, Academic Press, New York, 1969.Google Scholar
[2] McKean, H. P.Excursions of a non-singular diffusion, Z. Wahrscheinlichkeitstheorie, 1, 230–239 1963.CrossRefGoogle Scholar
[3] McKean, H. P.Brownian local times, Adv. Math., 16, 91–111 1975.CrossRefGoogle Scholar
[1] McNamara, J. M.A regularity condition on the transition probability measure of a diffusion process. Stochastics, 15, 161–182 1985.CrossRefGoogle Scholar
[1] Mandl, P.Analytic Treatment of One-Dimensional Markov Processes, Springer, Berlin, 1968.Google Scholar
[1] Meleard, S.Application du calcul stochastique à l'étude de processus de Markov réguliers sur [0,1], Stochastics, 19, 41–82 1986.CrossRefGoogle Scholar
[1] Metivier, M. and Pellaumail, J.Stochastic Integration, Academic Press, New York, 1979.Google Scholar
[1] Meyer, P. A.Un cours sur les intégrales stochastiques, Séminaire de Probabilités X: Lecture Notes in Mathematics 511, Springer, Berlin, 1976, pp. 245-400.Google Scholar
[2] Meyer, P. A.Probability and Potential (English translation), Blaisdell, Waltham, Mass., 1966.Google Scholar
[3] Meyer, P. A.Processus de Markov: Lecture Notes in Mathematics 26, Springer, Berlin, 1967.CrossRefGoogle Scholar
[4] Meyer, P. A.Processus de Markov: la Frontière de Martin: Lecture Notes in Mathematics 77, Springer, Berlin, 1970.Google Scholar
[5] Meyer, P. A.Démonstration simplifiée d'un théorème de Knight, Sém. de Probabilités V: Lecture Notes in Mathematics 191, Springer, Berlin, 1971, pp. 191-195.Google Scholar
[6] Meyer, P. A.Démonstration probabiliste de certaines inégalités de Littlewood-Paley, Sém. de Probabilités X: Lecture Notes in Mathematics 511, Springer, Berlin, 1976, pp. 125–183.Google Scholar
[7] Meyer, P. A.Flot d'un equation différentielle stochastique, Sèm. de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 103–117.Google Scholar
[8] Meyer, P. A.Sur la démonstration de prévisibilité de Chung and Walsh, Sém. de Probabilités IX: Lecture Notes in Mathematics 465, Springer, Berlin, 1975, pp. 530–533.Google Scholar
[9] Géométrie stochastique sans larmes, Séminaire de Probabilités X V: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 44-102.
[10] Meyer, P. A.Géométrie stochastique sans larmes (bis), Séminaire de Probabilités XVI: Supplément, Lecture Notes in Mathematics 921, Springer, Berlin, 1982, pp. 165–207.Google Scholar
[11] Meyer, P. A.Eléments de probabilités quantiques, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 186–312.Google Scholar
[1] Mihlstein, G. N.Approximate integration of stochastic differential equations, Th. Prob. Appl., 19, 557–562 1974.Google Scholar
[1] Millar, P. W.Random times and decomposition theorems, in Probability: Proc. Symp. Pure Math. XXXI, American Mathematical Society, Providence, RI, 1977, pp. 91-103.Google Scholar
[2] Millar, P. W.A path decomposition for Markov processes, Ann. Prob., 6, 345–348 1978.CrossRefGoogle Scholar
[1] Mitter, S. K.Lectures on non-linear filtering and stochastic control, in Mitter and Moro [1], pp. 170–207.
[1] Mitter, S. K. and Moro, A. (editors) Non-linear filtering and stochastic control, Lecture Notes in Mathematics 972, Springer, Berlin, 1982.
[1] Motoo, M.Application of additive functionals to the boundary problem of Markov processes (Levy's system of U-processes), Proc. Fifth Berkeley Symposium Math. Statist. Prob. 11(2), Univ. Calif. Press, Berkeley, 1967, pp. 75–110.Google Scholar
[1] Motoo, M. and Watanabe, S.On a class of additive functionals of Markov processes, J. Math. Kyoto Univ., 4, 429–469 (1965).CrossRefGoogle Scholar
[1] Nakao, S.On the path wise uniqueness of solutions of one-dimensional stochastic differential equations, Osaka J. Math., 9, 513–518 1972.Google Scholar
[1] Nash, J. F.The imbedding problem for Riemannian manifolds, Ann. of Math., 63, 20-63 (1956).CrossRefGoogle Scholar
[1] Nelson, E.Dynamical Theories of Brownian Motion, Princeton Univ. Press, 1967.Google Scholar
[2] Nelson, E.Quantum Fluctuations, Princeton Univ. Press, 1984.Google Scholar
[1] Neveu, J.Bases Mathématiques du Calcul des Probabilités, Masson, Paris, 1964.Google Scholar
[2] Neveu, J.Sur les états d'entrée et les états fictifs d'un processus de Markov, Ann. Inst. Henri Poincaré, 17, 323–337 1962.Google Scholar
[3] Neveu, J.Lattice methods and submarkovian processes, Proc. 4th Berkeley Symp. Math. Statist. Prob., Vol. 2, University of California Press, 1960, pp. 347-391.Google Scholar
[4] Neveu, J.Une généralisation des processus à accroissements positifs indépendants, Abh. Math. Sem. Univ. Hamburg, 25, 36–61 1961.CrossRefGoogle Scholar
[5] Neveu, J.Entrance, exit and fictitious states for Markov chains, Proc. Aarhus Colloq. Combin. Prob., 1962, pp. 64–68.Google Scholar
[1] Norris, J. R.Simplified Malliavin calculus, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 101–130.Google Scholar
[1] Norris, J. R., Rogers, L. C. G. and Williams, D.Brownian motion of ellipsoids, Trans. Amer. Math. Soc, 294, 757–765 1986.CrossRefGoogle Scholar
[2] Norris, J. R., Rogers, L. C. G. and Williams, D.Self-avoiding random walk: a Brownian motion model with local time drift, Prob. Thy. and Rel. Fields, 74, 271–287 1987.Google Scholar
[1] Ocone, D.Malliavin's calculus and stochastic integral: representation of functionals of diffusion processes, Stochastics, 12, 161–185 1984.CrossRefGoogle Scholar
[1] Orihara, A.On random ellipsoid, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 17, 73–85 1970.Google Scholar
[1] Pardoux, E.Stochastic differential equations and filtering of diffusion processes, Stochastics, 3, 127–167 1979.Google Scholar
[2] Pardoux, E.Grossissement d'une filtration et retournement du temps d'une diffusion, Sém. de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 48–55.Google Scholar
[3] Pardoux, E.Equations of non-linear filtering, and applications to stochastic control with partial observations, in Mitter and Moro [1], pp. 208–248.
[1] Pardoux, E. and Talay, D.Discretization and simulation of stochastic differential equations, to appear in Acta Appl. Math.
[1] Parthasarathy, K. R.Probability Measures on Metric Spaces, Academic Press, New York, 1967.CrossRefGoogle Scholar
[1] Pauwels, E. and Rogers, L. C. G.Paper on Brownian motions on homogeneous spaces (to appear).
[1] Perkins, E.Local time and path wise uniqueness for stochastic differential equations, Sém. de Probabilités XVI: Lecture Notes in Mathematics 920, Springer, Berlin, 1982, pp. 201–208.Google Scholar
[2] Perkins, E.Local time is a semimartingale Z. Wahrscheinlichtkeitsth., 60, 79–117 1982.Google Scholar
[1] Phelps, R. R.Lectures on Choque's Theorem, Van Nostrand, Princeton, NJ, 1966.Google Scholar
[1] Pinsky, M. A.Homogenization and stochastic parallel displacement, in Williams [13], pp. 271–284.
[2] Pinsky, M. A.Stochastic Riemannian geometry, in Probabilistic Analysis and Related Topics, 1 (ed. A. T., Bharucha-Reid), Academic Press, New York, 1978.Google Scholar
[1] Pitman, J. W.One-dimensional Brownian motion and the three-dimensional Bessel process, J. Appl. Prob., 7, 511–526 1975.Google Scholar
[2] Pitman, J. W.Path decomposition for conditional Brownian motion, Inst. Math. Statist. Univ. Copenhagen, Preprint No. 11 (1974).Google Scholar
[3] Pitman, J. W.Levy systems and path decompositions, in Çinlar, Chung and Getoor [1, 1981].CrossRefGoogle Scholar
[1] Pitman, J. W. and Yor, M.Bessel processes and infinitely divisible laws, in Stochastic Integrals (ed. D. Williams), Lecture Notes in Mathematics 851, Springer, Berlin, 1981.Google Scholar
[2] Pitman, J. W. and Yor, M.A decomposition of Bessel bridges. Z. Wahrscheinlichkeitsth., 59, 425–457 1982.CrossRefGoogle Scholar
[3] Pitman, J. W. and Yor, M.The asymptotic joint distribution of windings of planar Brownian motion, Bull. Amer. Math. Soc, 10, 109–111 1984.CrossRefGoogle Scholar
[4] Pitman, J. W. and Yor, M.Asymptotic laws of planar Brownian motion, Ann. Probab., 14, 733–779 1986.CrossRefGoogle Scholar
[1] Pittenger, A. O. and Shih, C. T.Coterminal families and the strong Markov property, Trans. Amer. Math. Soc, 182, 1–42 1973.CrossRefGoogle Scholar
[1] Poor, W. A.Differential Geometric Structures, McGraw-Hill, New York, 1981.Google Scholar
[1] Port, S. C. and Stone, C. J.Classical potential theory and Brownian motion, Proc. 6th Berkeley Symp. Math. Statist. Prob., Vol. 3, University of California Press, 1972, pp. 143–176.Google Scholar
[2] Port, S. C. and Stone, C. J.Logarithmic potentials and planar Brownian motion, Proc. 6th Berkeley Symp. Math. Statist. Prob., Vol. 3, University of California Press, 1972, pp. 177-192.Google Scholar
[3] Port, S. C. and Stone, C. J.Brownian Motion and Classical Potential Theory, Academic Press, New York, 1978.Google Scholar
[1] Price, G. C. and Williams, D.Rolling with ‘slipping’: I, Sém. de Probabilités XVII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983, pp. 194–197.Google Scholar
[1] Prohorov, Yu. V.Convergence of random processes and limit theorems in probability, Theor. Prob. Applic, 1, 157–214 1956.Google Scholar
[1] Protter, P.On the existence, uniqueness, convergence and explosions of solutions of stochastic differential equations, Ann. Probab., 5, 243–261 1977.CrossRefGoogle Scholar
[1] Rao, K. M.On decomposition theorems of Meyer, Math. Scand., 24, 66–78 1969.CrossRefGoogle Scholar
[2] Rao, K. M.Quasimartingales, Math. Scand., 24, 79–92 1969.Google Scholar
[1] Ray, D. B.Resolvents, transition functions and strongly Markovian processes, Ann. Math., 70, 43–72 1959.CrossRefGoogle Scholar
[2] Ray, D. B.Sojourn times of a diffusion process, Illinois J. Math., 7, 615–630 1963.Google Scholar
[1] Reuter, G. E. H.Denumerable Markov processes, II, J. London Math. Soc, 34, 81–91 1959.Google Scholar
[1] Revuz, D.The Martin boundary of a recurrent random walk has one or two points, in Probability: Proc. Symp. Pure Math. XXXI, American Mathematical Society, Providence, RI, 1977, pp. 125–130.Google Scholar
[1] Rogers, L. C. G.Williams' characterization of the Brownian excursion law: proof and applications, Séminaire de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 227–250.Google Scholar
[2] Rogers, L. C. G.Itô excursion theory via resolvents, Z. Wahrscheinlichkeitstheorie, 63, 237-255 (1983).CrossRefGoogle Scholar
[3] Rogers, L. C. G.Smooth transition densities for one-dimensional diffusions, Bull. London Math. Soc, 17, 157–161 1985.CrossRefGoogle Scholar
[4] Rogers, L. C. G.Continuity of martingales in the Brownian excursion filtration, to appear.
[1] Rosen, J.A local time approach to self-intersections of Brownian paths in space, Comm. Math. Phys., 88, 327–338 1983.CrossRefGoogle Scholar
[1] Schwartz, L.Geometrie différentielle du 2ième ordre, semimartingales et équations différentielles stochastiques sur une variété différentielle, Sém. de Probabilités XVI: Supplément, Lecture Notes in Mathematics 921, Springer, Berlin, 1982, pp. 1–148.Google Scholar
[1] Sharpe, M. J.Forthcoming book on Markov processes.
[1] Sheppard, P.On the Ray-Knight property of local times, J. London Math. Soc., 31, 377-384 (1985).Google Scholar
[1] Shiga, T. and Watanabe, S.Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahrscheinlichkeitstheorie, 27, 37–46 (1973).CrossRefGoogle Scholar
[1] Shigekawa, I.Derivatives of Wiener functionals and absolute continuity of induced measure, J Math. Kyoto Univ., 20, 263–289 1980.CrossRefGoogle Scholar
[1] Sllverstein, M. L.Symmetric Markov Processes: Lecture Notes in Mathematics 426, Springer, Berlin 1974.CrossRefGoogle Scholar
[2] Sllverstein, M. L.Boundary Theory for Symmetric Markov Processes: Lecture Notes in Mathematics 516, Springer, Berlin, 1976.CrossRefGoogle Scholar
[1] Simon, B.Functional Integration and Quantum Physics, Academic Press, New York, 1979.Google Scholar
[2] Simon, B.Paper on tunnelling (to appear, Ann. Inst. H. Poincarel)
[1] Skorokhod, A. V.Limit theorems for stochastic processes, Theor. Prob. Applic, 1, 261–290 1956.CrossRefGoogle Scholar
[2] Skorokhod, A. V.Limit theorems for Markov processes, Theor. Prob. Applic, 3, 202–246 1958.CrossRefGoogle Scholar
[1] Spitzer, F.Principles of Random Walk, Van Nostrand, Princeton, NJ, 1964.CrossRefGoogle Scholar
[1] Strassen, V.An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie, 3, 211–226 1964.CrossRefGoogle Scholar
[2] Strassen, V.Almost sure behaviour of sums of independent random variables and martingales, Proc. 5th Berkeley Symp. Math. Statist. Prob., Vol. 2, Part 1, University of California Press, 1966, pp. 315–343.Google Scholar
[1] Stroock, D. W.The Malliavin calculus and its applications to second-order parabolic differential operators I, II, Math. System Theory, 14, 25-65, 141-171 (1981).Google Scholar
[2] Stroock, D. W.The Malliavin calculus; a functional analytical approach, J. Fund. Anal., 44, 217-257 (1981).CrossRefGoogle Scholar
[3] Stroock, D. W.Diffusion processes associated with Levy generators Z. Wahrscheinlichkeitstheorie, 32, 209–244 1975.CrossRefGoogle Scholar
[4] Stroock, D. W.An Introduction to the Theory of Large Deviations, Springer, Berlin, New York, 1984.CrossRefGoogle Scholar
[1] Stroock, D. W. and Varadhan, S. R. S.Multidimensional Diffusion Processes, Springer, New York, 1979.Google Scholar
[2] Stroock, D. W. and Varadhan, S. R. S.On the support of diffusion processes with applications to the strong maximum principle, Proc. 6th Berkeley Symp. Math. Statist. Prob., Ill, Univ. Calif. Press, Berkeley, 1972, pp. 333-359.Google Scholar
[3] Stroock, D. W. and Varadhan, S. R. S.Diffusion processes with boundary conditions, Comm. Pure Appl. Math., 24, 147-225 (1971).CrossRefGoogle Scholar
[1] Stroock, D. W. and Yor, M.Some remarkable martingales, Sem. de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 590–603.Google Scholar
[1] Sussmann, H. J.On the gap between deterministic and stochastic ordinary differential equations, Ann. Prob., 6, 19–41 (1978).CrossRefGoogle Scholar
[1] Taylor, H. M.A stopped Brownian motion formula, Ann. Prob., 3, 234–246 1975.CrossRefGoogle Scholar
[1] Taylor, S. J.Sample path properties of processes with stationary independent increments, in Stochastic Analysis, eds D. G., Kendall and E. F., Harding, Wiley, New York, 1973, pp. 387–414.Google Scholar
[1] Tsirelson, B. S.An example of the stochastic equation having no strong solution, Teoria Verojatn. i Primenen., 20, (2), 427-430 (1975).Google Scholar
[1] Van Den Berg, M. and Lewis, J. T.Brownian motion on a hypersurface, Bull. London Math. Soc, 17, 144–150 1985.CrossRefGoogle Scholar
[1] Varadhan, S. R. S.Large deviations and applications, SIAM, Philadelphia, 1984.Google Scholar
[1] Walsh, J. B.Excursions and local time, in Azema and Yor [2], pp. 159–192.
[2] Walsh, J. B.Stochastic integration with respect to local time, in Çinlar, Chung and Getoor [1; 1983]CrossRefGoogle Scholar
[1] Warner, F. W.Foundations of Differentiable Manifolds and Lie Groups, Springer, Berlin, New York, 1983.CrossRefGoogle Scholar
[1] Watanabe, S.On discontinuous additive functionals and Levy measures of a Markov process, Jap. J. Math., 34, 53–79 1964.CrossRefGoogle Scholar
[1] Whitney, H.Geometric Integration Theory, Princeton University Press, Princeton, N. J., 1957.CrossRefGoogle Scholar
[1] Whittle, P.Optimization Over Time (two volumes), Wiley, Chichester, 1982, 1983.Google Scholar
[1] Williams, D.Brownian motions and diffusions as Markov processes, Bull. London Math. Soc., 6, 257–303 1974.CrossRefGoogle Scholar
[2] Williams, D.Some basic theorems on harnesses, in Stochastic Analysis, eds. D. G., Kendall and E. F., Harding, Wiley, New York, 1973, pp. 349-366.Google Scholar
[3] Williams, D.On Levy's downcrossing theorem, Z. Wahrscheinlichkeitstheorie, 40, 157-158 (1977).CrossRefGoogle Scholar
[4] Williams, D.Path decomposition and continuity of local time for one-dimensional diffusions, I, Proc. London Math. Soc., Ser. 3, 28, 738-768 (1974).Google Scholar
[5] Williams, D.On a stopped Brownian motion formula of H. M. Taylor, Séminaire de Probabilités X: Lecture Notes in Mathematics 511, Springer, Berlin, 1976, pp. 235-239.Google Scholar
[6] Williams, D.Markov properties of Brownian local time, Bull. Am. Math. Soc., 75, 1035-1036 (1969).CrossRefGoogle Scholar
[7] Williams, D.Decomposing the Brownian path, Bull. Am. Math. Soc, 76, 871–873 1970.CrossRefGoogle Scholar
[8] Williams, D.The Q-matrix problem for Markov chains, Bull. Am. Math. Soc, 81, 1115–1118 1975.CrossRefGoogle Scholar
[9] Williams, D.The Q-matrix problem, Séminaire de Probabilités X: Notes in Mathematics 511, Springer, Berlin, 1976, pp. 216-234.Google Scholar
[10] Williams, D.A note on the Q-matrices of Markov chains, Z. Wahrscheinlichkeitstheorie, 7, 116–121 1967.CrossRefGoogle Scholar
[11] Williams, D.Some g-matrix problems, in Probability: Proc Symp. Pure Math. XXXI, American Mathematical Society, Providence, RI, 1977, pp. 165–169.Google Scholar
[12] Williams, D.Diffusions, Markov Processes, and Matingales, Volume 1: Foundations, Wiley, Chichester, New York, 1979.Google Scholar
[13] Williams, D.(editor) Stochastic integrals: Proceedings, LMS Durham Symposium, Lecture Notes in Mathematics 851, Springer, Berlin 1981.CrossRef
[14] Williams, D.Conditional excursion theory, Sém. de Probabilités XIII: Lecture Notes in Mathematics 721, Springer, Berlin, 1979, 490-494.Google Scholar
[1] Yamada, T.On a comparison theorem for solutions of stochastic differential equations and its applications, J. Math. Kyoto Univ., 13, 497–512 1973.CrossRefGoogle Scholar
[1] Yamada, T. and Ogura, Y.On the strong comparison theorems for solutions of stochastic differential equations, Z. Wahrscheinlichkeitstheorie, 56, 3–19 1981.CrossRefGoogle Scholar
[1] Yamada, T. and Watanabe, S.On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 11, 155–167 1971.CrossRefGoogle Scholar
[1] Yor, M.Sur certains commutateurs d'une filtration, Sém. de Probabilités X V: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 526–528.Google Scholar
[2] Yor, M.Sur la continuité des temps locaux associés à certaines semimartingales, in Azema and Yor [2], pp. 23–35.
[3] Yor, M.Rappel et préliminaires généraux, in Azema and Yor [2], pp. 17–22.
[4] Yor, M.Précisions sur l'existence et la continuité des temps locaux d'intersection du mouvement Brownien dans ℝ2, Sém. de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 532–542.Google Scholar
[5] Yor, M.Sur la réprésentation comme intégrales stochastiques des temps d'occupation du mouvement Brownien dans ℝ2Sém. de Probabilités XX: Lecture Notes in Mathematics 1204, pp. 543–552.
[1] Yosida, K.Functional Analysis, Springer, Berlin, 1965.Google Scholar
[2] Yosida, K.Brownian motion in homogeneous Riemannian space, Pacific J. Math., 2, 263–296 1952.CrossRefGoogle Scholar
[1] Zakai, M.The Malliavin calculus, Acta Appl. Math., 3, 175–207 1985.CrossRefGoogle Scholar
[1] Zheng, W. A. and Meyer, P.-A.Quelques résultats de ‘méchanique stochastique’, Sém. de Probabilités X VIII: Lecture Notes in Mathematics 1059, Springer, Berlin, 1984, pp. 223–244.Google Scholar
[1] Zvonkin, A. K.A transformation of the phase space of a diffusion process that removes the drift, Math. USSR Sbornik, 22, 129–149 1974.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • L. C. G. Rogers, University of Bath, David Williams, University of Bath
  • Book: Diffusions, Markov Processes and Martingales
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511805141.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • L. C. G. Rogers, University of Bath, David Williams, University of Bath
  • Book: Diffusions, Markov Processes and Martingales
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511805141.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • L. C. G. Rogers, University of Bath, David Williams, University of Bath
  • Book: Diffusions, Markov Processes and Martingales
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511805141.005
Available formats
×