Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-25T13:03:30.542Z Has data issue: false hasContentIssue false

1 - Phase Equilibrium and Its Geometric Presentation

Published online by Cambridge University Press:  08 August 2009

F. B. Petlyuk
Affiliation:
ECT Service, Moscow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bushmakin, I. N., & Kish, I. N. (1957a). Rectification Investigations of a Ternary System Having an Azeotrope of the Saddle-Point Type. J. Appl. Chem., 30, 401–12 (Rus.)Google Scholar
Bushmakin, I. N., & Kish, I. N. (1957b). Separating Lines of Distillation and Rectification of Ternary Systems. J. Appl. Chem., 30, 595–606 (Rus.)Google Scholar
Doherty, M. F., & Caldarola, G. A. (1985). Design and Synthesis of Homogeneous Aseotropic Distillations. 3. The Sequencing of Columns for Azeotropic and Extractive Distillations. Ind. Eng. Chem. Fundam., 24, 474–85CrossRefGoogle Scholar
Gurikov, Yu V. (1958). Some Questions Concerning the Structure of Two-Phase Liquid–Vapor Equilibrium Diagrams of Ternary Homogeneous Solutions. J. Phys. Chem., 32, 1980–96 4(Rus.)Google Scholar
Matsuyama, H., & Nishimura, H. (1977). Topological and Thermodynamic Classification of Ternary Vapor–Liquid Equilibria. J. Chem. Eng. Japan., 10, 181–7CrossRefGoogle Scholar
Ostwald, W. (1900). Dampfdrucke ternarer Gemische, Abhandlungen der Mathematisch-Physischen Classe der Konige Sachsischen. Gesellschaft der Wissenschaften, 25, 413–53 (Germ.)Google Scholar
Petlyuk, F. B. (1978). Thermodynamically Reversible Fractionation Process for Multicomponent Azeotropic Mixtures. Theor. Found. Chem. Eng., 12, 270–6Google Scholar
Petlyuk, F. B., Kievskii, V. Ya., & Serafimov, L. A. (1975a). Thermodynamic and Topological Analysis of Phase Diagrams of Polyazeotropic Mixtures. 1. Determination of Distillation Regions Using a Computer. J. Phys. Chem., 49, 1834–5 (Rus.)Google Scholar
Petlyuk, F. B., Kievskii, V. Ya., & Serafimov, L. A. (1975b). Thermodynamic and Topological Analysis of Phase Diagrams of Polyazeotropic Mixtures. 2. Algorithm for Construction of Structural Graphs for Azeotropic Ternary Mixtures. J. Phys. Chem., 49, 1836–7 (Rus.)Google Scholar
Petlyuk, F. B., Kievskii, V. Ya., & Serafimov, L. A. (1977). Method for Isolation of Regions of Rectification Polyazeotropic Mixtures Using an Electronic Computer. Theor. Found. Chem. Eng., 11, 1–7Google Scholar
Petlyuk, F. B., Kievskii, V. Ya., & Serafimov, L. A. (1979). Determination of Product Compositions for Polyazeotropic Mixtures Distillation. Theor. Found. Chem. Eng., 13, 643–9Google Scholar
Petlyuk, F. B., Zaranova, D. A., Isaev, B. A., & Serafimov, L. A. (1985). The Presynthesis and Determination of Possible Separation Sequences of Azeotropic Mixtures. Theor. Found. Chem. Eng., 19, 514–24Google Scholar
Reinders, W., & Minjer, C. H. (1940a). Vapour–Liquid Equilibria in Ternary Systems. 1. The System Acetone–Chloroform–Benzene. Rec. Trav. Chim. Pays-Bas., 59, 392–400CrossRefGoogle Scholar
Reinders, W., & Minjer, C. H. (1940b). Vapour–Liquid Equilibria in Ternary Systems. 2. The Course of the Distillation Lines in the System Acetone–Chloroform–Benzene. Rec. Trav. Chim. Pays-Bas., 59, 401–406Google Scholar
Schreinemakers, F. A. H. (1901). Dampfdrucke ternarer Gemische. J. Phys. Chem., 36, 413–49 (Germ.)Google Scholar
Serafimov, L. A. (1969). The Azeotropic Rule and the Classification of Multicomponent Mixtures. 4. N-Component Mixtures. J. Phys. Chem., 43, 981–3 (Rus.)Google Scholar
Walas, S. M. (1985). Phase Equilibria in Chemical Engineering. Boston: Butterworth
Zharov, V. T. (1967). Free Evaporation of Homogeneous Multicomponent Solutions. J. Phys. Chem., 41, 1539–55 (Rus.)Google Scholar
Zharov, V. T. (1968a). Free Evaporation of Homogeneous Multicomponent. Solutions. 2. Four-Component Systems. J. Phys. Chem., 42, 58–70 (Rus.)Google Scholar
Zharov, V. T. (1968b). Free Evaporation of Homogeneous Multicomponent Solutions. 3. Behavior of Distillation Lines Near Singular Points. J. Phys. Chem., 42, 195–211 (Rus.)Google Scholar
Zharov, V. T., & Serafimov, L. A. (1975). Physico-Chemical Foundations of Bath Open Distillation and Distillation. Leningrad: Khimiya (Rus.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×