Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-25T13:04:48.669Z Has data issue: false hasContentIssue false

5 - Distillation Trajectories and Conditions of Mixture Separability in Simple Infinite Columns at Finite Reflux

Published online by Cambridge University Press:  08 August 2009

F. B. Petlyuk
Affiliation:
ECT Service, Moscow
Get access

Summary

Introduction

This chapter is the central one of the book; all previous chapters being introductory ones to it, and all posterior chapters arising from this one. Distillation process in infinite column at finite reflux is the most similar to the real process in finite columns. The difference in results of finite and infinite column distillation can be made as small as one wants by increasing the number of plates. Therefore, the main practical questions of distillation unit creation are those of separation flowsheet synthesis and of optimal design parameters determination (i.e., the questions of conceptual design) that can be solved only on the basis of theory of distillation in infinite columns at finite reflux.

The significance of such theory and, in particular, the significance of development of minimum reflux number calculation methods has been clear for numerous investigators all over the world since the beginning of distillation science development. A great number of publications have been devoted to these questions. However, the general distillation theory at finite reflux was created only lately on the basis of unification of several important ideas and theories of geometric nature. One can refer to the latter the idea of examination of distillation trajectory bundles at finite reflux for fixed product composition, the conception of sharp separation of multicomponent mixtures, the theory of location of reversible distillation trajectories in the concentration simplex, the theory of trajectory tear-off from the boundary elements of concentration simplex at finite reflux, and the theory of section trajectories joining.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acrivos, A., & Amundson, N. R. (1955). On the Steady State Fractionation of Multicomponent and Complex Mixture in an Ideal Cascade. Chem. Eng. Sci., 4, 29–38, 68–74, 141–8, 159–66, 206–8, 249–54CrossRefGoogle Scholar
Castillo, F. J. L., Thong, Y. C., & Towler, G. P. (1998). Homogeneous Azeotropic Distillation. Design Procedure for Single-Feed Columns at Nontotal Reflux. Ind. Eng. Chem. Res., 37, 987–97CrossRefGoogle Scholar
Castillo, F. G. L., & Towler, G. P. (1998). Influenceof Multicomponent Mass Transfer on Homogeneous Azeotropic Distillation. Chem. Eng. Sci., 53, 963–76CrossRefGoogle Scholar
Chien, H. H. Y. (1978). A Rigorous Method for Calculating Minimum Reflux Rates in Distillation. AIChE J., 24, 606–13CrossRefGoogle Scholar
Davydyan, A. G., Malone, M. F., & Doherty, M. F. (1997). Boundary Modes in a Single-Feed Distillation Column for Separation of Azeotropic Mixtures. Theor. Found. Chem. Eng., 31, 327–38Google Scholar
Erbar, R. C., & Maddox, R. N. (1962). Minimum Reflux Rate for Multicomponent Distillation Systems by Rigorous Plate Calculations. Can. J. Chem. Eng., 2, 25–30CrossRefGoogle Scholar
Fidkowski, Z. T., Doherty, M. F., & Malone, M. F. (1993). Feasibility of Separations for Distillationof Nonideal Ternary Mixtures. AIChE J., 39, 1303–21CrossRefGoogle Scholar
Fidkowski, Z. T., Malone, M. F., & Doherty, M. F. (1991). Non ideal Multicomponent Distillation: Use of Bifurcation Theory for Design. AIChE J., 37, 1761–79CrossRefGoogle Scholar
Franklin, N. L. (1986). Counterflow Cascades: Part I. Chem. Eng. Res. Des., 64, 56–66Google Scholar
Franklin, N. L. (1988a). Counterflow Cascades: Part II. Chem. Eng. Res. Des., 66, 47–64Google Scholar
Franklin, N. L. (1988b). The Theory of Multicomponent Countercurrent Cascades. Chem. Eng. Res. Des., 66, 65–74Google Scholar
Franklin, N. L., & Forsyth, J. S. (1953). The Interpretation of Minimum Reflux Conditions in Multicomponent Distillation. Trans. Inst. Chem. Eng., 31, 363–88Google Scholar
Hausen, H. (1934). Einfluss des Argons auf die Rektifikation der Luft. Forsc. Geb. Ingenieurwes, 6, 290–97 (Germ.)CrossRefGoogle Scholar
Hausen, H. (1935). Rektifikation von Dreistoffgemischen - Insbesondere von Sauerstoff-Stickstoff-Luft. Forsch. Geb. Ingenieurwes, 6, 9–22 (Germ.)CrossRefGoogle Scholar
Hausen, H. (1952). Rektifikation Idealer Dreistoffgemische. Z. Angew. Phys., 4, 41–51 (Germ.)Google Scholar
Holland, C. D. (1963). Multicomponent Distillation. New York: Prentice Hall
Julka, V., & Doherty, M. F. (1990). Geometric Behavior and Minimum Flows for Nonideal Multicomponent Distillation. Chem. Eng. Sci., 45, 1801–22CrossRefGoogle Scholar
Kiva, V. N. (1976). Qualitative Analysis of Distillation by Means of Weak Mathematical Model. In Physical-Chemical Investigation of Mass-Transfer Processes. Leningrad: VNIISK (Rus.)
Koehler, J., Aguirre, P., & Blass, E. (1991). Minimum Reflux Calculations for Nonideal Mixtures Using the Reversible Distillation Model. Chem. Eng. Sci., 46, 3007–21CrossRefGoogle Scholar
Kondrat'ev, A. A., Frolova, L. N., Serafimov, L. A., & Hasanov, Z. K. (1977). Peculiarities of Distillation of Azeotropic Mixtures with Intersection of Boundaries of Distillation Regions. Theor. Found. Chem. Eng., 11, 907–12Google Scholar
Lee, E. S. (1974). Estimation of Minimum Reflux in Distillation and Multipoint Boundary Value Problems. Chem. Eng. Sci., 29, 871–5CrossRefGoogle Scholar
Levy, S. G., & Doherty, M. F. (1986). A Simple Exact Method for Calculating Tangent Pinch Points in Multicomponent Nonideal Mixtures by Bifurcation Theory. Chem. Eng. Sci., 41, 3155–60CrossRefGoogle Scholar
Levy, S. G., Dongen, D. B., & Doherty, M. F. (1985). Design and Synthesis of Homogenous Azeotropic Distillation. 2. Minimum reflux Calculations for Nonideal and Azeotropic Columns. Ind. Eng. Chem. Fundam., 24, 463–74CrossRefGoogle Scholar
McCabe, W. L. & Thiele, E. W. (1925). Graphical Design of Fractionating Columns. Ind. Eng. Chem., 17, 606–11CrossRefGoogle Scholar
McDonough, J. A. & Holland, C. D. (1962). Figure Separations This New Way–Part 9 – How to Figure Minimum Reflux. Hydrocarbon Process. Petrol. Refin., 41, 153–60Google Scholar
Petlyuk, F. B. (1978). Rectification of Zeotropic, Azeotropic and Continuous Mixtures in Simple and Complex Infinite Columns at Finite Reflux. Theor. Found. Chem. Eng., 12, 671–8Google Scholar
Petlyuk, F. B. (1998). Simple Predicting Methods for Feasible Sharp Separations of Azeotropic Mixtures. Theor. Found. Chem. Eng., 32, 245–53Google Scholar
Petlyuk, F. B., Avet'yan, V. S., & Platonov, V. M. (1968). Research of Multicomponent Distillation at Minimum Reflux. Theor. Found. Chem. Eng., 2, 155–68Google Scholar
Petlyuk, F. B., & Danilov, R. Yu. (1998). Calculations of Distillation Trajectories at Minimum Reflux for Ternary Azeotropic Mixtures. Theor. Found. Chem. Eng., 32, 548–59Google Scholar
Petlyuk, F. B., & Danilov, R. Yu. (1999). Feasible Separation Variants and Minimum Reflux Calculations. Theor. Found. Chem. Eng., 33, 571–83Google Scholar
Petlyuk, F. B., & Danilov, R. Yu. (2000). Synthesis of Separation Flowsheets for Multicomponent Azeotropic Mixtures on the Basis of the Distillation Theory. Synthesis: Finding Optimal Separation Flowsheets. Theor. Found. Chem. Eng., 34, 444–56CrossRefGoogle Scholar
Petlyuk, F. B. & Danilov, R. Yu. (2001a).Few-Step Iterative Methods for Distillation Process Design Using the Trajectory Bundle Theory:Algorithm Structure. Theor. Found. Chem. Eng., 35, 224–36CrossRefGoogle Scholar
Petlyuk, F. B. & Danilov, R. Yu. (2001b).Theory of Distillation Trajectory Bundles and Its Application to the Optimal Design of Separation Units:Distillation Trajectory Bundles at Finite Reflux. Trans IChemE, 79, Part A, 733–46CrossRefGoogle Scholar
Petlyuk, F. B., & Sezafimov, L. A. (1983). Multicomponent Distillation. Theory and Calculation. Moscow: Khimiya (Rus)
Petlyuk, F. B., & Vinogradova, E. I. (1980). Theoretical Analysis of Minimum Reflux Regime for Ternary Azeotropic Mixtures. Theor. Found. Chem. Eng., 14, 413–18Google Scholar
Petlyuk, F. B., Vinogradova, E. I., & Serafimov, L. A. (1984). Possible Compositions of Products of Ternary Azeotropic Mixture Distillation at Minimum Reflux. Theor. Found. Chem. Eng., 18, 87–94Google Scholar
Poellmann, P., & Blass, E. (1994). Best Products of Homogeneous Azeotropic Distillations. Gas Separation and Purification, 8, 194–228CrossRefGoogle Scholar
Poellmann, P., Glanz, S., & Blass, E. (1994). Calculating Minimum Reflux of Nonideal Multicomponent Distillation Using Eigenvalue Theory. Comput. Chem. Eng., 18, 549–53CrossRefGoogle Scholar
Schreinemakers, F. A. H. (1901). Dampfdrucke ternarer Gemische. Z. Phys. Chem., 36, 1413–49(Germ.)CrossRefGoogle Scholar
Serafimov, L. A., Timofeev, V. S., & Balashov, M. I. (1973a). Rectification of Multicomponent Mixtures. 3. Local Characteristics of the Trajectories Continuous Rectification Process at Finite Reflux Ratios. Acta Chimica Academiae Scientiarum Hungarical, 75, 235–54Google Scholar
Serafimov, L. A., Timofeev, V. S., & Balashov, M. I. (1973b). Rectification of Multicomponent Mixtures. 4. Non-Local Characteristics of Continuous Rectification, Trajectories for Ternary Mixtures at Finite Reflux Ratios. Acta Chimica Academiae Scientiarum Hungarical, 75, 255–70Google Scholar
Shafir, A. P., Petlyuk, F. B., & Serafimov, L. A. (1984). Change of Composition of Azeotropic Mixtures Distillation Products in Infinite Columns at Increase of Reflux Rate. In The Calculation Researches of Separation for Refining and Chemical Industry (pp. 55–75). Moscow: Zniiteneftechim (Rus.)
Shiras, R. N., Hanson, D. N., & Gibson, G. H. (1950). Calculation of Minimum Reflux in Distillation Columns. Ind. Eng. Chem., 42, 871–6CrossRefGoogle Scholar
Stichlmair, J., Offers, H., & Potthoff, R. W. (1993). Minimum Reflux and Minimum Reboil in Ternary Distillation. Ind. Eng. Chem. Res., 32, 2438–45CrossRefGoogle Scholar
Stichlmair, J. G., Offers, H., & Potthoff, R. W. (1993). Minimum Reflux and Reboil in Ternary Distillation. Ind. Eng. Chem. Res., 32, 2438–45CrossRefGoogle Scholar
Tavana, M. & Hanson, D. N. (1979). The Exact Calculation of Minimum Flows in Distillation Columns. Ind. Eng. Chem. Process Des. Dev., 18, 154–6CrossRefGoogle Scholar
Underwood, A. J. V. (1945). Fractional Distillation of Ternary Mixtures. Part I. J. Inst. Petrol., 31, 111–18Google Scholar
Underwood, A. J. V. (1946a). Fractional Distillation of Ternary Mixtures. Part II. J. Inst. Petrol., 32, 598–613Google Scholar
Underwood, A. J. V. (1946b). Fractional Distillation of Multicomponent Mixtures (Calculation of Minimum Reflux Ratio). J. Inst. Petrol., 32, 614–26Google Scholar
Underwood, A. J. V. (1948). Fractional Distillation of Multicomponent Mixtures. Chem. Eng. Prog., 44, 603–14Google Scholar
Vogelpohl, A. (1964). Rektifikation von Dreistoffgemischen (Teil 1: Rektifikation als Stoffaustauschvorgang und Rektifikationslinien Idealer Gemische). Chem.-Ing.-Tech., 36, 1033–45 (Germ.)CrossRefGoogle Scholar
Vogelpohl, A. (1970). Rektifikation Idealer Vielstoffgemische. Chem.-Ing.-Tech., 42, 1377–82 (Germ.)CrossRefGoogle Scholar
Wahnschafft, O. M., Koehler, J. W., Blass, E., & Westerberg, A. W. (1992). The Product Composition Regions of Single-Feed Azeotropic Distillation Columns. Ind. Eng. Chem. Res., 31, 2345–62CrossRefGoogle Scholar
White, R. R. (1953). Stripping, Rectifying and Distillation of Ternary, Quaternary and Multicomponent Mixtures. Petrol. Process., 8, 357–62, 539–43, 704–9, 892–6, 1026–31, 1174–9, 1366–69, 1533–6, 1705–7Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×