Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-25T13:00:58.957Z Has data issue: false hasContentIssue false

7 - Trajectories of the Finite Columns and Their Design Calculation

Published online by Cambridge University Press:  08 August 2009

F. B. Petlyuk
Affiliation:
ECT Service, Moscow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amminudin, K. A., Smith, R., Thong, D. Y.-C. & Towler, G. P. (2001). Design and Optimization of Fully Thermally Coupled Distillation Columns. Part 1: Preliminary Design and Optimization Methodology. Trans IChemE, 79, Part A, 701–15CrossRefGoogle Scholar
Bauer, M. H. & Stichlmair, J. (1995). Synthesis and Optimization of Distillation Sequences for the Separation of Azeotropic Mixtures. Comput. Chem. Eng., 19, 515–20CrossRefGoogle Scholar
Bril, Z. A., Mozzhukhin, A. S., Pershina, L. A. & Serafimov, L. A. (1985). Combined Theoretical and Experimental Design Method for Heteroazeotropic Rectification. Theor. Found. Chem. Eng., 19, 449–54Google Scholar
Bril, Z. A., Mozzhukhin, A. S., Petlyuk, F. B. & Serafimov, L. A. (1974). Simulation of Distillation of Multicomponent Heterogeneous Azeotropic Mixtures. Theor. Found. Chem. Eng., 8, 351–60Google Scholar
Bril, Z. A., Mozzhukhin, A. S., Petlyuk, F. B. & Serafimov, L. A. (1975). Simulation and Research Heteroazeotropic Distillation. Theor. Found. Chem. Eng., 9, 811–21Google Scholar
Bril, Z. A., Mozzhukhin, A. S., Petlyuk, F. B. & Serafimov, L. A. (1977). Investigations of Optimal Conditions of Heteroazeotropic Rectification. Theor. Found. Chem. Eng., 11, 675–81Google Scholar
Carlberg, N. A. & Westerberg, A. W. (1989). Temperature (Heat Diagrams for Complex Columns: 2. Underwood's Method for Side Strippers and Enrichers. Ind. Eng. Chem. Res., 28, 1379–86CrossRefGoogle Scholar
Cerda, J. & Westerberg, A. W. (1981). Shortcut Methods for Complex Distillation Columns: 1. Minimum Reflux. Ind. Eng. Chem. Process Des. Dev., 20, 546–57CrossRefGoogle Scholar
Dhole, V. R. & Linnhoff, B. (1993). Distillation Column Targets. Comput. Chem. Eng., 17, 549–60CrossRefGoogle Scholar
Doherty, M. F. & Melone, M. F. (2001). Conceptual Design of Distillation Systems. NY: McGraw-Hill
Dunnebier, G. & Pentelides, C. C. (1999). Optimal Design of Thermally Coupled Distillation Columns. Ind. Eng. Chem. Res., 38, 162CrossRefGoogle Scholar
Fenske, M. R. (1932). Fractionation of straight-Run Pennsylvania Gasoline. Ind. Eng. Chem. 24, 482–485CrossRef
Fonyo, Z., Scabo, J. & Foldes, P. (1974). Study of Thermally Coupled Distillation Columns. Acta Chim., 82, 235–49Google Scholar
Gilliland, E. R. (1940). Multicomponent Rectification. Optimum Feed-Plate Composition. Ind. Eng. Chem., 32, 918–20CrossRefGoogle Scholar
Glinos, K. & Malone, M. F. (1985). Minimum Vapor Flows in a Distillation Column with a Side Stream – Stripper. Ind. Eng. Chem. Process Des. Dev., 24, 1087–90CrossRefGoogle Scholar
Hengstebeck, R. J. (1961). Distillation: Principles and Design Procedures. New York: Reinhold Publishing, pp. 147–9
Julka, V. & Doherty, M. F. (1990). Geometric Behavior and Minimum Flows for Nonideal Multicomponent Distillation. Chem. Eng. Sci., 45, 1801–22CrossRefGoogle Scholar
Knapp, J. P. & Doherty, M. F. (1990). Thermal Integration of Homogeneous Azeotropic Distillation Sequences. AIChE J., 36, 969–84CrossRefGoogle Scholar
Knapp, J. P. & Doherty, M. F. (1992). A New Pressure-Swing Distillation Process for Separating Homogeneous Azeotropic Mixtures. Ind. Eng. Chem. Res., 31, 346–57CrossRefGoogle Scholar
Knapp, J. P. & Doherty, M. F. (1994). Minimum Entrainer Flows for Extractive Distillation: A Bifurcation Theoretic Approach. AIChE J., 40, 243–68CrossRefGoogle Scholar
Knight, J. R. & Doherty, M. F. (1989). Optimal Design and Synthesis of Homogeneous Azeotropic Distillation Sequences. Ind. Eng. Chem. Res., 28, 564–72CrossRefGoogle Scholar
Levy, S. G. & Doherty, M. F. (1986). Design and Synthesis of Homogeneous Azeotropic Distillation. 4. Minimum Reflux Calculations for Multiple Feed Columns. Ind. Eng. Chem. Fundam., 25, 269–79CrossRefGoogle Scholar
Lewis, W. K., & Matheson, G. L. (1932). Studies in Distillation Design of Rectifying Columns for Natural and Refinery Gasoline. Ind. Eng. Chem., 24(5), 494–498
Liebmann, K., Dhole, V. R. & Jobson, M. (1998). Integrated Design of a Conventional Crude Oil Distillation Tower Using Pinch Analysis. Trans IChemE, 76, Part A, 335–47CrossRefGoogle Scholar
Nelson, W. L. (1936). Petroleum Refinery Engineering. New York: McGraw-Hill
Nikolaides, J. P. & Malone, M. F. (1987). Approximate Design of Multiple Feed/Side-Stream Distillation Systems. Ind. Eng. Chem. Res., 26, 1839–45CrossRefGoogle Scholar
Packie, J. W. (1941). Distillation Equipment in the Oil Refining Industry. AIChE Trans., 27, 51–8Google Scholar
Petlyuk, F. B. (1984). Necessary Condition of Disappearance of Components at Distillation of Azeotropic Mixtures in Simple and Complex Columns. In The Calculation Researches of Separation for Refining and Chemical Industry (pp. 3–22). Moscow: Zniiteneftechim (Rus.)
Petlyuk, F. B., & Danilov, R. Yu. (1999). Sharp Distillation of Azeotropic Mixtures in a Two-Feed Column. Theor. Found. Chem. Eng., 33, 233–42Google Scholar
Petlyuk, F. B. & Danilov, R. Yu. (2001a). Few-Step Iterative Methods for Distillation Process Design Using the Trajectory Bundle Theory: Algorithm Structure. Theor. Found. Chem. Eng., 35, 224–36CrossRefGoogle Scholar
Petlyuk, F. B. & Danilov, R. Yu. (2001b). Theory of Distillation Trajectory Bundles and its Application to the Optimal Design of Separation Units: Distillation Trajectory Bundles at Finite Reflux. Trans IChemE, 79, Part A, 733–46CrossRefGoogle Scholar
Pham, H. N. & Doherty, M. F. (1990a). Design and Synthesis of Azeotropic Distillation: I. Heterogeneous Phase Diagram. Chem. Eng. Sci., 45, 1823–36CrossRefGoogle Scholar
Pham, H. N. & Doherty, M. F. (1990b). Design and Synthesis of Azeotropic Distillation: II. Residue Curve Maps. Chem. Eng. Sci., 45, 1837–43CrossRefGoogle Scholar
Pham, H. N. & Doherty, M. F. (1990c). Design and Synthesis of Azeotropic Distillation: III. Column Sequences. Chem. Eng. Sci., 45, 1845–54CrossRefGoogle Scholar
Rooks, R. E., Malone, M. F. & Doherty, M. F. (1996). Geometric Design Method for Side-Stream Distillation Columns. Ind. Eng. Chem. Res., 35, 3653–64CrossRefGoogle Scholar
Russel, R. A. (1983). A Flexible and Reliable Method Solves Single-Tower and Crude-Distillation Column Problems. Chem. Eng., 90, 53Google Scholar
Ryan, P. J. & , Doherty M. F. (1989). Design/Optimization of Ternary Heterogeneous Azeotropic Distillation Sequences. AIChE J., 35, 1592–601CrossRefGoogle Scholar
Sorel, E. (1893). La Rectification de l'Alcohol. Paris: Gauthier-Villars. (French)
Tedder, D. W. & Rudd, D. F. (1978). Parametric Studies in Industrial Distillation. AIChE J., 24, 303–15CrossRefGoogle Scholar
Thiele, E. W. & Geddes, R. L. (1933). Computation of Distillation Apparatus for Hydrocarbon Mixtures. Ind. Eng. Chem., 25, 289–95CrossRefGoogle Scholar
Triantafyllou, C. & Smith, R. (1992). The Design and Optimization of Fully Thermally Coupled Distillation Columns. Trans IChemE., 70, Part A, 118–32Google Scholar
Underwood, A. J. V. (1948). Fractional Distillation of Multicomponent Mixtures. Chem. Eng. Prog., 44, 603–14Google Scholar
Wahnschafft, O. M. & Westerberg, A. W. (1993). The Product Composition Regions of Azeotropic Distillation Columns. 2. Separability in Two-Feed Columns and Entrainer Selection. Ind. Eng. Chem. Res., 32, 1108–20CrossRefGoogle Scholar
Watkins, R. N. (1979). Petroleum Refinery Distillation. Houston, TX: Gulf Publishing

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×