Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T18:21:42.659Z Has data issue: false hasContentIssue false

8 - Nitrogen processes in coastal and marine ecosystems

from Part II - Nitrogen processing in the biosphere

Published online by Cambridge University Press:  16 May 2011

Maren Voss
Affiliation:
Leibniz-Institute of Baltic Sea Research Warnemuende
Alex Baker
Affiliation:
University of East Anglia
Hermann W. Bange
Affiliation:
Leibniz-Institut für Meereswissenschaften
Daniel Conley
Affiliation:
Lund University
Sarah Cornell
Affiliation:
University of Bristol
Barbara Deutsch
Affiliation:
Stockholm University
Anja Engel
Affiliation:
Alfred Wegener Institute for Polar and Marine Research
Raja Ganeshram
Affiliation:
University of Edinburgh
Josette Garnier
Affiliation:
UMR Sisyphe UPMC & CNRS
Ana-Stiina Heiskanen
Affiliation:
Finnish Environment Institute
Tim Jickells
Affiliation:
University of East Anglia
Christiane Lancelot
Affiliation:
Université Libre de Bruxelles
Abigail McQuatters-Gollop
Affiliation:
Sir Alister Hardy Foundation for Ocean Science
Jack Middelburg
Affiliation:
Utrecht University
Doris Schiedek
Affiliation:
National Environmental Research Institute
Caroline P. Slomp
Affiliation:
Utrecht University
Daniel P. Conley
Affiliation:
Lund University
Mark A. Sutton
Affiliation:
NERC Centre for Ecology and Hydrology, UK
Clare M. Howard
Affiliation:
NERC Centre for Ecology and Hydrology, UK
Jan Willem Erisman
Affiliation:
Vrije Universiteit, Amsterdam
Gilles Billen
Affiliation:
CNRS and University of Paris VI
Albert Bleeker
Affiliation:
Energy Research Centre of the Netherlands
Peringe Grennfelt
Affiliation:
Swedish Environmental Research Institute (IVL)
Hans van Grinsven
Affiliation:
PBL Netherlands Environmental Assessment Agency
Bruna Grizzetti
Affiliation:
European Commission Joint Research Centre
Get access

Summary

Executive summary

Nature of the problem

  • Nitrogen (N) inputs from human activities have led to ecological deteriorations in large parts of the coastal oceans along European coastlines, including harmful algae blooms and anoxia.

  • Riverine N-loads are the most pronounced nitrogen sources to coasts and estuaries. Other significant sources are nitrogen in atmospheric deposition and fixation.

Approaches

  • This chapter describes all major N-turnover processes which are important for the understanding of the complexity of marine nitrogen cycling, including information on biodiversity.

  • Linkages to other major elemental cycles like carbon, oxygen, phosphorus and silica are briefly described in this chapter.

  • A tentative budget of all major sources and sinks of nitrogen integrated for global coasts is presented, indicating uncertainties where present, especially the N-loss capacity of ocean shelf sediments.

  • Finally, specific nitrogen problems in the European Regional Seas, including the Baltic Sea, Black Sea, North Sea, and Mediterranean Sea are described.

Key findings/state of knowledge

  • Today, human activity delivers several times more nitrogen to the coasts compared to the natural background of nitrogen delivery. The source of this is the land drained by the rivers. Therefore, the major European estuaries (e.g. Rhine, Scheldt, Danube and the coastlines receiving the outflow), North Sea, Baltic Sea, and Black Sea as well as some parts of the Mediterranean coastlines are affected by excess nutrient inputs.

  • Biodiversity is reduced under high nutrient loadings and oxygen deficiency. This process has led to changes in the nutrient recycling in sediments, because mature communities of benthic animals are lacking in disturbed coastal sediments. The recovery of communities may not be possible if high productivity and anoxia persist for longer time periods.

Type
Chapter
Information
The European Nitrogen Assessment
Sources, Effects and Policy Perspectives
, pp. 147 - 176
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ærtebjerg, G., Andersen, J. H. and Hansen, O. S. (2003). Nutrients and Eutrophication in Danish Marine Waters: A Challenge for Science and Management. National Environmental Research Institute.Google Scholar
Ahad, J. M. E., Ganeshram, R. S., Spencer, R. G. M.et al. (2006). Evaluating the sources and fate of anthropogenic dissolved inorganic nitrogen (DIN) in two contrasting North Sea estuaries. Science of the Total Environment, 372, 317–333.CrossRefGoogle ScholarPubMed
Allen, J. I., Somerfield, P. J. and Siddorn, J. (2002). Primary and bacterial production in the Mediterranean Sea: a modelling study. Journal of Marine Systems, 33, 473–495.CrossRefGoogle Scholar
Andrews, J. E., Burgess, D., Cave, R. R.et al. (2006). Biogeochemical value of managed realignment, Humber estuary, UK. Science of the Total Environment, 371, 19–30.CrossRefGoogle ScholarPubMed
,Anonymous (1993). North Sea Quality Status Report 1993, North Sea Task Force. ICES/OSPAR Commissions, London.
Arrigo, K. R. (2005). Marine microorganisms and global nutrient cycles. Nature, 437, 349–355.CrossRefGoogle ScholarPubMed
Arrigo, K. R. (2007). Marine manipulations. Nature, 450, 491–492.CrossRefGoogle ScholarPubMed
Baker, A. R.et al. (2007). Dry and wet deposition of nutrients from the tropical Atlantic atmosphere: links to primary productivity and nitrogen fixation. Deep-Sea Research, 54, 1704–1720.CrossRefGoogle Scholar
Baker, A. R., Kelly, S. D., Biswas, K. F., Witt, M. and Jickells, T. D. (2003). Atmospheric deposition of nutrients to the Atlantic Ocean. Geophysical Research Letters, pp. 30.Google Scholar
Bange, H. W. (2006). Nitrous oxide and methane in European coastal waters. Estuarine, Coastal and Shelf Science, 70, 361–374.CrossRefGoogle Scholar
Bange, H. W. (2008). Gaseous nitrogen compounds (NO, N2O, N2, NH3) in the ocean. In: Nitrogen in the Marine Environment, ed. Capone, D. G.et al. Elsevier, Amsterdam, pp. 51–94.Google Scholar
Bange, H. W., Rapsomanikis, S. and Andreae, M. O. (1996). Nitrous oxide in coastal waters. Global Biogeochem Cycles, 10, 197–207.CrossRefGoogle Scholar
Banse, K. (1973). On the interpretation of data for the carbon-to-nitrogen ratio of phytoplankton. Limnology Oceanography, 695–699.Google Scholar
Banse, K. (1994). Uptake of inorganic carbon and nitrate by marine plankton and the Redfield ratio. Global Biogeochem Cycles, 8, 81–84.CrossRefGoogle Scholar
Barcelos e Ramos, J., Biswas, H., Schulz, K. G., LaRoche, J. and Riebesell, U. (2007). Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Global Biogeochemical Cycles, 21.CrossRefGoogle Scholar
Bashkin, V. N., Erdman, L. K., Abramychev, A. Y.et al. (1997). The Input of Anthropogenic Airborne Nitrogen to the Mediterranean Sea through its Watershed, MAP Technical Reports Series. UNEP-MAP/MedPol/WMO, Athens.
Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. and Edwards, M. (2002). Reorganization of North Atlantic marine copepod biodiversity and climate. Science of the Total Environment, 296, 1692–1694.Google ScholarPubMed
Behrendt, H. (2004). Past, Present and Future Changes in Catchment Fluxes. European Commission.Google Scholar
Benitez-Nelson, C. R. (2000). The biogeochemical cycling of phosphorus in marine systems. Earth Science Reviews, 51, 109–135.CrossRefGoogle Scholar
Berezina, N. and Golubkov, S. M. (2008). Effect of drifting macroalgae Cladophora glomerata on benthic community dynamics in the easternmost Baltic Sea. Journal of Marine Systems, 74, 80–85.CrossRefGoogle Scholar
Berger, R., Henriksson, E., Kautsky, L. and Malm, T. (2003). Effects of filamentous algae and deposited matter on the survival of Fucus vesiculosus L. germlings in the Baltic Sea. Aquatic Ecology, 37, 1–11.CrossRefGoogle Scholar
Bethoux, J. P. (1980). Mean water fluxes across sections in the Mediterranean Sea evaluated on the basis of water and salt budgets and of observed salinities. Oceanologica Acta, 3, 79–88.Google Scholar
Bethoux, J. P. and Copin-Montegut, G. (1986). Biological fixation of atmospheric nitrogen in the Mediterranean Sea. Limnology and Oceanography, 31, 1353–1358.CrossRefGoogle Scholar
Billen, G. and Garnier, J. (1997). The Phison River Plume: coastal eutrophication in response to changes in land use and water management in the watershed. Aquatic Microbial Ecology, 13, 3–17.CrossRefGoogle Scholar
Billen, G. and Garnier, J. (2007). River basin nutrient delivery to the coastal sea: assessing its potential to sustain new production of non-siliceous algae. Marine Chemistry, 106, 148–160.CrossRefGoogle Scholar
Billen, G., Lancelot, C. and Meybeck, M. (1991). N, P and Si retention along the Aquatic Continuum from Land to Ocean. In: Ocean Margin Processes in Global Change, ed. Mantoura, R. F. C., Martin, J.-M., and Wollast, R.. John Wiley & Sons, New York, pp. 19–44.Google Scholar
Billen, G., Silvestre, M., Grizzetti, B.et al. (2011). Nitrogen flows from European watersheds to coastal marine waters. In: The European Nitrogen Assessment, ed. Sutton, M. A., Howard, C. M., Erisman, J. W.et al. Cambridge University Press.Google Scholar
,Black Sea Environmental (1996). Black Sea Transboundary Diagnostic Analysis. Global Environmental Facility.
Bodeanu, N. (1993). Microalgal blooms in the Romanian area of the Black Sea and contemporary eutrophication conditions. In: Toxic Phytoplankton Blooms in the Sea, ed. Smayda, T. J. and Shimizu, Y.. Elsevier, Amsterdam, pp. 203–209.Google Scholar
Bodeanu, N. (2002). Algal blooms in Romanian Black Sea waters in the last two decades of the 20th century. Cercatari Marine, 34, 7–22.Google Scholar
Bodeanu, N., Andrei, C., Boicenco, L., Popa, L. and Sburlea, A. (2004). A new trend of the phytoplankton structure and dynamics in Romanian marine waters. Cercatari Marine, 35, 77–86.Google Scholar
Bodenbender, J. and Papen, H. (1996). Bedeutung gasförmiger Komponenten an den Grenzflächen Sediment/Atmosphäre und Wasser/Atmosphäre. Sylter 20 Wattenmeer Austauschprozesse (SWAP), Projektsynthese, pp. 252–278.
Boesch, D. F., Brinsfield, R. B. and Magnien, R. E. (2001). Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. Journal of Environmental Quality, 30, 303–320.CrossRefGoogle ScholarPubMed
Bonsdorff, E. and Pearson, T. H. (1999). Variation in the sublittoral macrozoobenthos of the Baltic Sea along environmental gradients: a functional-group approach. Australian Journal of Ecology, 312–326.CrossRefGoogle Scholar
Boyd, P. W.et al. (2007). Mesocale iron enrichment experiments 1993–2005: synthesis and future directions. Science, 315, 612–617.CrossRefGoogle Scholar
Bradley, P. B., Sanderson, M. P., Frischer, M. E.et al. (2010). Inorganic and organic nitrogen uptake by phytoplankton and heterotrophic bacteria in the stratified Mid-Atlantic Bight. Estuarine, Coastal and Shelf Science, 88, 429–441.CrossRefGoogle Scholar
Brandes, J. A., Devol, A. H. and Deutsch, C. (2007). New developments in the marine nitrogen cycle. Chemical Reviews, 107, 577–589.CrossRefGoogle ScholarPubMed
Breton, E., Rousseau, V., Parent, J. Y., Ozer, J. and Lancelot, C. (2006). Hydroclimatic modulation of diatom/Phaeocystis blooms in the nutrient-enriched Belgian coastal waters (North Sea). Limnology and Oceanography, 51, 1–14.CrossRefGoogle Scholar
Brettar, I. and Rheinheimer, G. (1992). Influence of carbon availability on denitrification in the central Baltic Sea. Limnology and Oceanography, 37, 1146–1163.CrossRefGoogle Scholar
Bronk, D. A., See, J. H., Bradley, P. and Killberg, L. (2007). DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences, 283–296.CrossRefGoogle Scholar
Bryden, H. L. and Stommel, H. M. (1984). Limiting processes that determine basic features of the circulation in the Mediterranean Sea. Oceanologica Acta, 7, 289–296.Google Scholar
Caddy, J. F. (1993). Contrast between recent fishery trends and evidence from nutrient enrichment in two large marine ecosystems: the Mediterranean and the Black Seas. In: Large Marine Ecosystems: Stress, Mitigation, and Sustainability, ed. Sherman, K.et al. American Association for the Advancement of Science, Washington DC, pp. 137–147.Google Scholar
Cadée, G. C. and Hegeman, J. (1991). Historical phytoplankton data of the Marsdiep. Hydrobiological Bulletin, 24, 111–118.CrossRefGoogle Scholar
Capone, D. G. (1988). Benthic nitrogen fixation. In: Nitrogen Cycling in Coastal Marine Environments, ed. T. H. Blackburn, John Wiley & Sons, NewYork, pp. 85–123.Google Scholar
Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. and Carpenter, E. J. (1997). Trichodesmium, a globally significant marine cyanobacterium. Science, 276, 1221–1229.CrossRefGoogle Scholar
Castro, M. S. and Driscoll, C. T. (2002). Atmospheric nitrogen deposition to estuaries in the mid-Atlantic and northeastern United States. Environmental Science and Technology, 36, 3242–3249.CrossRefGoogle ScholarPubMed
Christensen, P. B., Rysgaard, S., Sloth, N. P., Dalsgaard, T. and Schwaerter, S. (2000). Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquatic Microbial Ecology, 27, 73–81.CrossRefGoogle Scholar
Cloern, J. E. (1996). Phytoplankton blooms dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Review of Geophysics, 34, 127–168.CrossRefGoogle Scholar
Cociasu, A. and Popa, L. (2004). Significant changes in Danube nutrient loads and their impact on the Romanian Black Sea coastal waters. Cercatari Marine, 35, 25–37.Google Scholar
Cociasu, A., Popa, L. and Buga, L. (1998). Long-term evolution of the nutrient concentrations on the north-western shelf of the Black Sea. Cercatari Marine, 13, 29.Google Scholar
Commission, Black Sea (2002). State of the Environment of the Black Sea: Pressures and Trends: 1996–2000. Black Sea Commission.
Conley, D. J. (1999). Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia, 410, 87–96.CrossRefGoogle Scholar
Conley, D. J., Carstensen, J., Ærtebjerg, G.et al. (2007). Long-term changes and impacts of hypoxia in Danish coastal waters. Ecological Applications, 17, 165–184.CrossRefGoogle Scholar
Conley, D. J., Humborg, C., Rahm, L., Savchuk, O. P. and Wulff, F. (2002). Hypoxia in the Baltic Sea and basin scale changes in phosphorus biogeochemistry. Environmental Science and Technology, 36, 5315–5320.CrossRefGoogle ScholarPubMed
Conley, D. J., Schelske, C.I. and Stoermer, E. F. (1993). Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecology Progress Series, 81, 121–128.CrossRefGoogle Scholar
Cornell, S. E., Jickells, T. D., Cape, J. N.et al. (2003). Organic nitrogen deposition on land and coastal environments: a review of methods and data. Atmospheric Environment, 37, 2173–2191.CrossRefGoogle Scholar
Coste, B. (1987). Les sels nutritifs dans le basin occidental de la Méditerranée. Rapport Commission International Mer Méditerranée, 30, 399–410.Google Scholar
Crouzet, P., Leonard, J., Nixon, S.et al. (1999). Nutrients in European Ecosystems. EEA Environmental Assessment Report, Copenhagen.Google Scholar
Crusius, J., Kroeger, K., Bratton, J.et al. (2008). N2O fluxes from coastal waters due to submarine groundwater discharge. Geochimica et Cosmochimica Acta, 72, A191–A191, Suppl. 191.Google Scholar
Cruzado, A. (1988). Eutrophication in the pelagic environment and its assessment. In: Eutrophication in the Mediterranean Sea: Receiving Capacity and Monitoring of Long-term Effects, UNESCO Reports in Marine Science, Paris, France, pp. 57–66.Google Scholar
Cugier, P., Billen, G., Guillaud, J. F., Garnier, J. and Ménesguen, A. (2005). Modelling the eutrophication of the Seine Bight (France) under historical, present and future riverine nutrient loading. Journal of Hydrology, 304, 381–396.CrossRefGoogle Scholar
Dahl, E., Bagoien, E., Edvardsen, B. and Stenseth, N. C. (2005). The dynamics of Chrysochromulina species in the Skagerrak in relation to environmental conditions. Journal of Sea Research, 54, 15–24.CrossRefGoogle Scholar
Dalsgaard, T. (2003). Benthic primary production and nutrient cycling in sediments with benthic microalgae and transient accumulation of macroalgae. Limnology and Oceanography, 48, 2138–2150.CrossRefGoogle Scholar
Danovaro, R. (2003). Pollution threats in the Mediterranean Sea: an overview. Chemistry and Ecology, 19, 15–32.CrossRefGoogle Scholar
daNUbs, (2005). DaNUbs: Nutrient Management of the Danube Basin and its Impact on the Black Sea. DaNUbs.
Daskalov, G. M. (2002). Overfishing drives a trophic cascade in the Black Sea. Marine Ecology Progress Series, 225, 53–63.CrossRefGoogle Scholar
Wilde, H. P. J. and de Bie, M. J. M. (2000). Nitrous oxide in the Schelde estuary: production by nitrification and emission to the atmosphere. Marine Chemistry, 69, 203–216.CrossRefGoogle Scholar
Degobbis, D. and Gilmartin, M. (1990). Nitrogen, phosphorus and biogenic silicon budgets for the Northern Adriatic Sea. Oceanologica Acta, 13, 31–45.Google Scholar
Dentener, F.et al. (2006). Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem. Cycles, 20.CrossRefGoogle Scholar
Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N. and Dunne, J. P. (2007). Spatial coupling of nitrogen inputs and losses in the ocean. Nature, 445, 163–167.CrossRefGoogle ScholarPubMed
Diaz, J. D. (2001). Overview of hypoxia around the world. Journal of Environmental Quality, 30, 275–281.CrossRefGoogle ScholarPubMed
Diaz, R. J. and Rosenberg, R. (1995). Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology, 33, 245–303.Google Scholar
Diaz, R. J. and Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926–929.CrossRefGoogle ScholarPubMed
Dippner, J. W., Vuorinen, I., Daunys, D.et al. (2008). Climate-related marine ecosystem change. In: Assessment of Climate Change for the Baltic Sea Basin, ed. T. B. A. Team, Springer, New York, pp. 309–377.Google Scholar
Dise, N. B., Ashmore, M., Belyazid, S.et al. (2011). Nitrogen as a threat to European terrestrial biodiversity. In: The European Nitrogen Assessment, ed. Sutton, M. A., Howard, C. M., Erisman, J. W.et al. Cambridge University Press.Google Scholar
Druon, J.-N., Schrimpf, W., Dobricic, S. and Stips, A. (2004). Comparative assessment of large-scale marine eutrophication: North Sea area and Adriatic Sea as case studies. Marine Ecology Progress Series, 272, 1–23.CrossRefGoogle Scholar
Duarte, C. (1995). Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia, 41, 87–112.CrossRefGoogle Scholar
Duarte, C. M., Middelburg, J. and Caraco, N. (2005). Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2, 1–8.CrossRefGoogle Scholar
Duce, R. A.et al. (1991). The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 5, 193–259.CrossRefGoogle Scholar
Duce, R. A.et al. (2008). Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 320, 893–897.CrossRefGoogle ScholarPubMed
Dugdale, R. C. and Goering, J. J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography, 12, 196–206.CrossRefGoogle Scholar
Edvardsen, B., Moy, F. and Paasche, E. (1990). Hemolytic activity in extracts of Chrysochromulina polylepis grown at different levels of selinite and phosphate. In: Physiological Ecology of Harmful Algal Blooms, ed. Graneli, E., Sundstrom, B. and Edler, L., Springer, Berlin, pp. 190–208.
,EEA (1999). State and Pressures of the Marine and Coastal Mediterranean Environment. Office for Official Publications of the European Communities, Luxembourg, Downloadable from reports.eea.europa.eu/medsea/en/medsea_en.pdf
,EEA (2005). Source Apportionment of Nitrogen and Phosphorus Inputs into the Aquatic Environment. European Environment Agency, Copenhagen.
Eilola, K. and Stigebrandt, A. (1999). On the seasonal nitrogen dynamics of Baltic proper biogeochemical reactor. Journal of Marine Research, 57, 693–713.CrossRefGoogle Scholar
Emmerson, M. C., Solan, M., Paterson, D. M. and Raffaelli, D. (2001). Consistent patterns and the idiosyncratic effects of biodiversity in marine ecosystems. Nature, 411, 73–77.CrossRefGoogle ScholarPubMed
Engel, A. (2002). Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton. Journal of Plankton Research, 24, 49–53.CrossRefGoogle Scholar
Engel, A., Goldthwait, S., Passow, U. and Alldredge, A. (2002). Temporal decoupling of carbon and nitrogen dynamics in a mesocosm diatom bloom. Limnology and Oceanography, 47, 753–761.CrossRefGoogle Scholar
Engel, A., Delille, B., Jacquet, S.et al. (2004). Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment. Aquatic Microbial Ecology, 34, 93–104.CrossRefGoogle Scholar
Estep, K. and MacIntyre, F. (1989). Taxonomy, life cycle, distribution and dasmotrophy of Chrysochromulina: a theory accounting for scales, haptonema, muciferous bodies and toxicity. Marine Ecology Progress Series, 57, 11–21.CrossRefGoogle Scholar
,EuroCat (2010). www.cs.iia.cnr.it/EUROCAT/project.htm
Fleming-Lehtinen, V., Laamanen, M., Kuosa, H., Haahti, H. and Olsonen, R. (2008). Long-term development of inorganic nutrients and chlorophyll a in the open northern Baltic Sea. Ambio, 37, 86–92.CrossRefGoogle Scholar
Follmi, K. B. (1996). The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Sciences Reviews, 40, 55–124.CrossRefGoogle Scholar
Forster, S. and Zettler, M. L. (2004). The capacity of the filter-feeding bivalve Mya arenaria L. to affect water transport in sandy beds. Marine Biology, 144, 1183–1189.Google Scholar
Galloway, J. N.et al. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153–226.CrossRefGoogle Scholar
Galloway, J. N., Schlesinger, W. H., Levy, H., Michaels, A. and Schnoor, J. L. (1995). Nitrogen-fixation – anthropogenic enhancement – environmental response. Global Biogeochemical Cycles, 9, 235–252.CrossRefGoogle Scholar
Garnier, J., Sferratore, A., Meybeck, M., Billen, G. and Dürr, H. (2006). Modelling silica transfer processes in river catchments. In: The Silicon Cycle: Human Perturbations and Impacts on Aquatic Systems, ed. V. Ittekkot et al., Island Press, Washington DC, p. 296.Google Scholar
Geider, R. J. and Roche, J. (2002). Redfield revisited: variability of C:N: P in marine microalgae and its biochemical basis. European Journal of Phycology, 37, 1–17.CrossRefGoogle Scholar
Grall, J. and Chauvaud, L. (2002). Marine eutrophication and benthos: the need for new approaches and concepts. Global Change Biology, 8, 813–830.CrossRefGoogle Scholar
Graneli, E., Wallström, K., Arsson, U., Granelli, W. and Elmgren, R. (1990). Nutrient limitation of primary production in the Baltic Sea area. Ambio, 19, 142–151.Google Scholar
Gray, J. (1997). Marine Biodiversity: patterns, threats and conservation needs. Biodiversity and Conservation, 6, 153–175.CrossRefGoogle Scholar
Gray, J., Shiu-sun Wu, R. and Or, Y. Y. (2002). Effects of hypoxia and organic enrichment on the coastal environment. Marine Ecology Progress Series, 238, 249–279.CrossRefGoogle Scholar
Grizzetti, B., Bouraoui, F., Billen, G.et al. (2011). Nitrogen as a threat to European water quality. In: The European Nitrogen Assessment, ed. Sutton, M. A., Howard, C. M., Erisman, J. W.et al. Cambridge University Press.Google Scholar
Gruber, N. (2004). The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2 variations in carbon–climate interactions. In: Carbon-Climate Interactions, ed. M. Follows, and Oguz, T., John Wiley & Sons, New York, pp. 1–47.Google Scholar
Gruber, N. and Galloway, J. N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293–296.CrossRefGoogle ScholarPubMed
Guerzoni, S.et al. (1999). The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Progress in Oceanography, 44, 147–190.CrossRefGoogle Scholar
Hannig, M., Lavik, G., Kuypers, M. M. M.et al. (2007). Shift from denitrification to anammox after inflow events in the central Baltic. Limnology and Oceanography, 53, 1336–1345.CrossRefGoogle Scholar
Harrison, P. J., Hu, M. J., Yang, Y. P. and Lu, X. (1990). Phosphate limitation in estuarine and coastal waters of China. Journal of Experimental Marine Biology and Ecology, 140, 79–87.CrossRefGoogle Scholar
Hashimoto, S., Gojo, K., Hikota, S., Sendai, N. and Otsuki, A. (1999). Nitrous oxide emissions from coastal waters in Tokyo Bay. Marine Environmental Research, 47, 213–223.CrossRefGoogle Scholar
Heip, C. (1995). Eutrophication and zoobenthos dynamics. Ophelia, 41, 113–136.CrossRefGoogle Scholar
,HELCOM (1997). Airborne Pollution Load to the Baltic Sea 1991–1995.
,HELCOM (2002). Baltic Sea Environment Proceedings, Helsinki Commission. Environment of the Baltic Sea area 1994–1998. Baltic Sea Environment Proceedings, Helsinki Commission.
,HELCOM (2004). The 4th Baltic Sea Pollution Load Compilation. Baltic Sea Environment Proceedings, Helsinki Commission.
,HELCOM (2007). Helcom Baltic Sea Action Plan. http://www.helcom.fi/BSAP/en_GB/intro/.
Herbert, R. A. (1999). Nitrogen cycling in coastal marine ecosystems. Microbiology Reviews, 23, 563–590.Google ScholarPubMed
Hietanen, S. and Lukkari, K. (2007). Effects of short-term anoxia on benthic denitrification, nutrient fluxes and phosphorus forms in coastal Baltic sediment. Aquatic Microbial Ecology, 49, 293–302.CrossRefGoogle Scholar
Horrigan, S. G., Montoya, J. P., Nevins, J. L. and McCarthy, J. J. (1990). Natural isotopic composition of dissolved inorganic nitrogen in the Chesapeake Bay. Estuarine, Coastal and Shelf Science, 30, 393–410.CrossRefGoogle Scholar
Howarth, R. W. and Marino, R. (2006). Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnology and Oceanography, 51, 364–376.CrossRefGoogle Scholar
Hulth, S., Allerb, R. C., Canfield, D. E.et al. (2004). Nitrogen removal in marine environments: recent findings and future research challenges. Marine Chemistry, 94, 125–145.CrossRef
Humborg, C., Conley, D. J., Rahm, L.et al. (2000). Silicon retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio, 29, 45–51.CrossRefGoogle Scholar
Humborg, C., Smedberg, E., RodriguezMedina, M. and Mörth, C.-M. (2008). Changes in dissolved silicate loads to the Baltic Sea – The effects of lakes and reservoirs. Journal of Marine Systems, 73, 223–235.CrossRefGoogle Scholar
Hutchins, D. A., Fu, F.-X., Zhang, Y.et al. (2007). CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present and future ocean biogeochemistry. Limnology and Oceanography, 52, 1293–1304.CrossRefGoogle Scholar
Huthnance, J. M. (1995). Circulation and water masses at the ocean margin: the role of physical processes at the shelf edge. Progress in Oceanography, 35, 353.CrossRefGoogle Scholar
Hynes, R. K. and Knowles, R. (1984). Production of nitrous oxide by Nitrosomonas europaea: effects of acetylene, pH and oxygen. Canadian Journal of Microbiology, 30, 1397–1404.CrossRefGoogle Scholar
,IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel 25 on Climate Change. Cambridge University Press.
Jickells, T. D. (1998). Nutrient biogeochemistry of the coastal zone. Science, 281, 217–222.CrossRefGoogle ScholarPubMed
Jickells, T. D. (2006). The role of air–sea exchange in the marine nitrogen cycle. Biogeosciences, 3, 271–280.CrossRefGoogle Scholar
Jickells, T. D.et al. (2005). Global iron connections between desert dust, ocean biogeochemistry and climate. Science, 308, 67–71.CrossRefGoogle ScholarPubMed
Johansson, N. and Graneli, E. (1999). Cell density, chemical composition and toxicity of Chrysochromulina polylepis (Haptophyta) in relation to different N:P supply ratios. Marine Biology, 135, 209–217.CrossRefGoogle Scholar
Johnson, M. T.et al. (2008). Field observations of the ocean-atmosphere exchange of ammonia: fundamental importance of temperature as revealed by a comparison of high and low latitudes. Global Biogeochemical Cycles, 22.CrossRefGoogle Scholar
Jonsson, P., Carman, R. and Wulff, F. (1990). Laminated sediments in the Baltic: a tool for evaluating nutrient mass balances. Ambio, 19, 152–158.Google Scholar
Jorgensen, S. K., Jensen, H. B. and Sorensen, J. (1984). Nitrous oxide production from nitrification and denitrification in marine sediments at low oxygen concentrations. Canadian Journal of Microbiology, 30, 1073–1078.CrossRefGoogle Scholar
Joye, S. B. and Hollibaugh, J. T. (1995). Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science, 270, 623–625.CrossRefGoogle Scholar
Justic, D., Rabalais, N. N., Turner, R. E. and Dortch, Q. (1995a). Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 40, 339–356.CrossRefGoogle Scholar
Justic, D., Rabalais, N. N. and Turner, R. E. (1995b). Stoichiometric nutrient balance and origin of coastal eutrophication. Marine Pollution Bulletin, 30, 41–46.CrossRefGoogle Scholar
Karlson, K., Bonsdorff, E. and Rosenberg, R. (2007). The impact of benthic macrofauna for nutrient fluxes from Baltic Sea sediments. Ambio, 36, 161–167.CrossRefGoogle ScholarPubMed
Karlson, K., Rosenberg, R. and Bonsdorff, E. (2002). Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters: a review. Oceanography and Marine Biology, 40, 427–489.Google Scholar
Kautsky, H. (1991). Influence of Eutrophication on the distribution of phytobenthic plant and animal communities. Internationale Revue der gesamten Hydrobiologie, 76, 423–432.CrossRefGoogle Scholar
Kemp, W. M., Sampou, P. A., Garber, J., Tuttle, J. and Boynton, W. R. (1992). Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: roles of benthic and planktonic respiration and physical exchange processes. Marine Ecology Progress Series, 85, 137–152.CrossRefGoogle Scholar
Koop, K., Boynton, W. R., Wulff, F. and Carman, R. (1990). Sediment-water oxygen and nutrient exchanges along a depth gradient in the Baltic Sea. Marine Ecology Progress Series, 63, 65–77.CrossRefGoogle Scholar
Krause-Jensen, D., Sagert, S. and Schubert, H.C. B. (2008). Empirical relationships linking distribution and abundance of marine vegetation to eutrophication. Ecological Indicators, 8, 515–529.CrossRefGoogle Scholar
Krishnamurthy, A., Moore, J. K., Zender, C. S. and Luo, C. (2007). Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry. Journal of Geophysical Research, 112.CrossRefGoogle Scholar
Krom, M. D., Brenner, S., Israilov, L. and Krumgalz, B. (1991a). Dissolved nutrients, preformed nutrients and calculated elemental ratios in the south-east Mediterranean Sea. Oceanologica Acta, 14, 189–194.Google Scholar
Krom, M. D., Kress, N., Brenner, S. and Gordon, L. (1991b). Phosphorus limitation of primary production in the eastern Mediterranean. Limnology and Oceanography, 36, 424–432.CrossRefGoogle Scholar
Krom, M. D., Thingstad, T. F., Brenner, S.et al. (2005a). Summary and overview of the CYCLOPS P addition Lagrangian experiment in the Eastern Mediterranean. Deep-Sea Research – Part II, 52, 3090–3108.CrossRefGoogle Scholar
Krom, M. D., Woodward, E. M. S., Herut, B.et al. (2005b). Nutrient cycling in the south east Levantine basin of the eastern Mediterranean: Results from a phosphorus starved system. Deep-sea Research – Part II, 52, 2879–2896.CrossRefGoogle Scholar
Kronvang, B., Larsen, S. E., Jensen, J. P., Andersen, H. E. and Lo Porto, A. (2004). Catchment Report: Enza, Italy – Trend Analysis, Retention and Source Apportionment, EUROHARP report 4–2004, NIVA report SNO 4787–2004. Oslo, Norway.
Kronvang, B., Larsen, S. E., Jensen, J. P., Andersen, H. E. and Reisser, H. (2005). Catchment Report: Vilaine, France. Trend Analysis, Retention and Source Apportionment. EUROHARP report 15–2005, NIVA report SNO 5081–2005. Oslo, Norway.
Kuypers, M. M. M.et al. (2003). Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422, 608–611.CrossRefGoogle ScholarPubMed
Kuypers, M. M. M., Lavik, G. and Thamdrup, B. (2006). Anaerobic ammonium oxidation in the marine environment. In: Past and Present Water Column Anoxia, ed. L. N. Neretin, Springer, New York, pp. 311–335.Google Scholar
Laakkonen, S. and Laurila, S. (2007). Changing environments or shifting paradigms? Strategic decision making toward water protection in Helsinki 1850–2000. Ambio, 36, 212–219.CrossRefGoogle ScholarPubMed
,LaguNET (2010). www.dsa.unipr.it/lagunet/english/index.htm
Lam, P., Lavik, G., Jensen, M. M.et al. (2009). Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences of the USA, 106, 4752–4757.CrossRefGoogle ScholarPubMed
Lancelot, C. (1995). The mucilage phenomenon in the continental coastal waters of the North Sea. Science of the Total Environment, 165, 83–112.CrossRefGoogle Scholar
Lancelot, C., Billen, G., Sournia, A.et al. (1987). Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. Ambio, 16, 38–46.Google Scholar
Lancelot, C., Keller, M., Rousseau, V., Smith Jr, W. O. and Mathot, S. (1998). Autoecology of the Marine Haptophyte Phaeocystis sp. In: Series G. Ecological Science – NATO Advanced Workshop on the Physiological Ecology of Harmful Algal Blooms, ed. Anderson, D. A., Cembella, A. M. and Hallegraeff, G., John Wiley & Sons, New york, pp. 209–224.Google Scholar
Lancelot, C., Gypens, N., Billen, G., Garnier, J. and Roubeix, V. (2007). Testing an integrated river-ocean mathematical tool for linking marine eutrophication to land use: the Phaeocystis-dominated Belgian coastal zone (Southern North Sea) over the past 50 years. Journal of Marine Systems, 64, 216–228.CrossRefGoogle Scholar
Lancelot, C., Rousseau, V. and Gypens, N. (2009). Ecologically based indicators for Phaeocystis disturbance in eutrophied Belgian coastal waters (Southern North Sea) based on field observations and ecological modeling. Journal of Sea Research, 61, 44–49.CrossRefGoogle Scholar
Langmead, O., McQuatters-Gollop, A. and Mee, L. D. (2007). European Lifestyles and Marine Ecosystems: Exploring Challenges for Managing Europe's Seas. University of Plymouth Marine Institute, Plymouth, UK.Google Scholar
Larsson, U., Elmgren, R. and Wulff, F. (1985). Eutrophication and the Baltic Sea. Ambio, 14, 9–14.Google Scholar
Levitan, O., Rosenberg, G., Setlik, I.et al. (2007). Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Global Change Biology, 13, 531–538.CrossRefGoogle Scholar
Loÿe-Pilot, M. D., Martin, J. M. and Morelli, J. (2004). Atmospheric input of inorganic nitrogen to the Western Mediterranean. Biogeochemistry, 9, 117–134.CrossRefGoogle Scholar
Loreau, M., Naem, S., Inchausti, P.et al. (2001). Biodiversity and ecosystem functioning: current knowledge and future challenge. Science, 294, 804–808.CrossRefGoogle Scholar
Louanchi, F. and Najjar, R. G. (2000). A global monthly climatology of phosphate, nitrate, and silicate in the upper ocean: spring–summer export production and shallow remineralization. Global Biogeochemical Cycles, 14, 957–977.CrossRefGoogle Scholar
Lucea, A., Duarte, C. M., Agusti, S. and Kennedy, H. (2005). Nutrient dynamics and ecosystem metabolism in the Bay of Blanes (NW Mediterranean). Biogeochemistry, 73, 303–323.CrossRefGoogle Scholar
Lundberg, C. (2005). Conceptualizing the Baltic Sea ecosystem: an interdisciplinary tool for environmental decision making. Ambio, 34, 433–439.CrossRefGoogle ScholarPubMed
Mackenzie, F. T., Ver, L. M. and Lerman, A. (2002). Century-scale nitrogen and phosphorus controls of the carbon cycle. Chemical Geology, 190, 13–32.CrossRefGoogle Scholar
Maestrini, S. and Graneli, E. (1991). Environmental conditions and ecophysiological mechanisms which lead to the Chrysochromulina bloom: a hypothesis. Oceanologica Acta, 14, 397–413.Google Scholar
Mahowald, N.et al. (2008). The global distribution of atmospheric phosphorus deposition and anthropogenic impacts. Global Biogeochemical Cycles, 19.Google Scholar
Mahowald, N. M.et al. (2005). The atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles, 19.CrossRefGoogle Scholar
Maranger, R., Caraco, N., Duhamel, J. and Amyot, M. (2008). Nitrogen transfer from sea to land via commercial fisheries. Nature Geoscience, 2, 111–113.CrossRefGoogle Scholar
Marchal, O., Monfray, P. and Bates, N. R. (1996). Spring–summer imbalance of dissolved inorganic carbon in the mixed layer of the northwestern Sargasso Sea. Tellus, 48B, 115–134.CrossRefGoogle Scholar
Mari, X. (2008). Does ocean acidification induce an upward flux of marine aggregates?Biogeosciences Discussion, 5, 1631–1654.CrossRefGoogle Scholar
McElroy, M. B. (1983). Marine biological controls on atmospheric CO2 and climate. Nature, 302, 328–329.CrossRefGoogle Scholar
McGill, D. A. (1969). A budget for dissolved nutrient salts in the Mediterranean Sea. Cahiers Océanographiques, 21, 543–554.Google Scholar
Mee, L. D. (2006). Reviving dead zones. Scientific American, 295, 54–61.CrossRefGoogle ScholarPubMed
Mee, L. D., Friedrich, J. and Gomoiu, M.-T. (2005). Restoring the Black Sea in times of uncertainty. Oceanography, 18, 32–43.CrossRefGoogle Scholar
Mermillod-Blondin, F., Rosenberg, R., Francois-Carcaillet, F., Norling, K. and Mauclaire, L. (2004). Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediments. Aquatic Microbial Ecology, 36, 271–284.CrossRefGoogle Scholar
Michaels, A. F., Bates, N. R., Buesseler, K. O., Carlson, C. A. and Knap, A. H. (1994). Carbon-cycle imbalance in the Sargasso Sea. Nature, 372, 537–540.CrossRefGoogle Scholar
Middelburg, J. J. and Nieuwenhuize, J. (2001). Nitrogen isotope tracing of dissolved inorganic nitrogen behaviour in tidal estuaries. Estuarine, Coastal and Shelf Science, 53, 385–391.CrossRefGoogle Scholar
Middelburg, J. J. and Soetaert, K. (2004). The role of sediments in shelf ecosystem dynamics. In: The Sea, ed. A. R. Robinson and K. H. Brink, Harvard University Press, Cambridge, MA, pp. 353–374.Google Scholar
Middelburg, J. J., Soetaert, K., Herman, P. M. J. and Heip, C. H. R. (1996). Marine sedimentary denitrification: a model study. Global Biogeochemical Cycles, 10, 661–673.CrossRefGoogle Scholar
Mills, M. M., Ridame, C., Davey, M., Roche, J. and Geider, R. J. (2004). Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature, 429, 292–294.CrossRefGoogle ScholarPubMed
Milovanovic, M. (2006). Water quality assessment and determination of pollution sources along the Axios/Vardar River, Southeastern Europe. Desalination, 213, 159–173.CrossRefGoogle Scholar
Moncheva, S., Doncheva, V. and Kamburska, L. (2001). On the long-term response of harmful algal blooms to the evolution of eutrophication off the Bulgarian Black Sea coast: are the recent changes a sign of recovery of the ecosystem – the uncertainties. In: Harmful Algal Blooms 2000, ed. Hallegraeff, G. M., Blackburn, S. I., Bolch, C. J. and Lewis, R. J., UNESCO, Paris, pp. 177–181.Google Scholar
Montserrat Sala, M., Peters, F., Gasol, J. M.et al. (2002). Seasonal and spatial variations in the nutrient limitation of bacterioplankton growth in the northwestern Mediterranean. Aquatic Microbial Ecology, 27, 47–56.CrossRefGoogle Scholar
Mulder, A., Graaf, A. A., Robertsonm, L. A. and Kuenen, J. G. (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 16, 177–184.CrossRefGoogle Scholar
Munda, I. A. (1993). Changes and degradation of seaweed stands in the Northern Adriatic. Hydrobiologia, 260/261, 239–253.CrossRefGoogle Scholar
Munoz, I. and Prat, N. (1989). Effects of river regulation on the lower Ebro River, Northeast Spain. Regulated Rivers: Research and Management, 3, 345–354.CrossRefGoogle Scholar
Nehring, D. and Matthäus, W. (1991). Current trends in hydrographic and chemical parameters and eutrophication in the Baltic Sea. Internationale Revue der gesamten Hydrobiologie, 76, 297–316.CrossRefGoogle Scholar
Némery, J. and Garnier, J. (2007). Dynamics of Particulate Phosphorus in the Seine estuary (France). Hydrobiologia, 588, 271–290.CrossRefGoogle Scholar
,NSTF, Ducrotoy, J. P., Pawlak, J. and Wilson, S. (1994). The 1993 Quality Status Report of the North Sea. International Council for the Exploration of the Sea, Oslo and Paris.
Nygaard, K. and Tobiesen, A. (1993). Bactivory in algae: a survival strategy during nutrient limitation. Limnology and Oceanography, 38, 273–279.CrossRefGoogle Scholar
,OAERRE (2010). www.lifesciences.napier.ac.uk/OAERRE/index.htm
Officer, C. B. and Ryther, J. H. (1980). The possible importance of silicon in marine eutrophication. Marine Ecology Progress Series, 3, 383–391.CrossRefGoogle Scholar
Olenin, S. (1997). Benthic zonation of the Eastern Gotland Basin. Netherlands Journal of Aquatic Ecology, 30, 265–282.CrossRefGoogle Scholar
,OSPAR, Pastch, J. and Radach, G. (2005). Long-term simulation of the eutrophication of the North Sea: temporal development of nutrients, chlorophyll and primary production in comparison to observations. Journal of Sea Research, 38, 275–310.Google Scholar
Österblom, H. O., Hansson, S., Larsson, U.et al. (2007). Human-induced trophic cascades and ecological regime shifts in the Baltic Sea. Ecosystems, 10, 877–889.CrossRefGoogle Scholar
Pace, M. L., Cole, J. J., Carpenter, S. R. and Kitchell, J. F. (1999). Trophic cascades revealed indiverse ecosystems. Trends in Ecology and Evolution, 14, 483–488.CrossRefGoogle Scholar
Paerl, H. W. and Whitall, D. R. (1999). Anthropogenically-derived atmospheric nitrogen deposition, marine eutrophication and harmful algal bloom expansion: is there a link?Ambio, 28, 307–311.Google Scholar
Patricio, J., Ulanowicz, R., Pardal, M. A. and Marques, J. C. (2004). Ascendency as an ecological indicator: a case study of estuarine pulse eutrophication. Estuarine, Coastal and Shelf Science, 60, 23–35.CrossRefGoogle Scholar
Paytan, A. and McLaughlin, K. (2007). The oceanic phosphorus cycle. Chemical Reviews, 107, 563–576.CrossRefGoogle ScholarPubMed
Pitkänen, H., Lehtoranta, J. and Räike, A. (2001). Internal nutrient fluxes counteract decreases in external load: the case of the estuarial eastern Gulf of Finland, Baltic Sea. Ambio, 30, 195–201.CrossRefGoogle Scholar
Pont, D. (1996). Evaluation des charges polluantes du Rhône à la Méditerranée: Synthèse et Recommendations. Agence de l'Eau Rhône-Méditerranée-Corse, Lyon, France.
Pranovi, F., Da Ponte, F. and Torricelli, P. (2008). Historical changes in the structure and functioning of the benthic community in the lagoon of Venice. Estuarine, Coastal and Shelf Science, 76, 753–764.CrossRefGoogle Scholar
Rabalais, N. (2002). Nitrogen in aquatic ecosystems. Ambio, 31, 102–112.CrossRefGoogle ScholarPubMed
Radach, G. (1992). Ecosystem functioning in the German Bight under continental nutrient inputs by rivers. Estuaries, 15, 477–496.CrossRefGoogle Scholar
Radach, G. and Pätsch, J. (1997). Climatological annual cycles of nutrients and chlorophyll in the North Sea. Journal of Sea Research, 38, 231–248.CrossRefGoogle Scholar
Radach, G. and Pätsch, J. (2007). Variability of continental riverine freshwater and nutrient inputs into the North Sea for the years 1977–2000 and its consequences for the assessment of eutrophication. Estuaries and Coasts, 30, 66–81, 10.1007/BF02782968.CrossRefGoogle Scholar
Raes, F.et al. (2000). Formation and cycling of aerosols in the global troposphere. Atmospheric Environment, 34, 4215–4240.CrossRefGoogle Scholar
Raffaelli, D. G., Emmerson, M., Solan, M., Biles, C. and Paterson, D. (2003). Biodiversity and ecosystem processes in shallow coastal waters: an experimental approach. Journal of Sea Research, 49, 133–141.CrossRefGoogle Scholar
Rahm, L.et al. (2000). Nitrogen fixation in the Baltic proper: an empirical study. Journal of Marine Systems, 25, 239–248.CrossRefGoogle Scholar
,REMPEC (2008). Study of maritime traffic flows in the Mediterranean Sea.
Rendell, A. R., Ottley, C. J., Jickells, T. D. and Harrison, R. M. (1993). The atmospheric input of nitrogen species to the North Sea. Tellus, 45B, 53–63.CrossRefGoogle Scholar
Riebesell, U. (2004). Effects of CO2 enrichment on marine phytoplanktons. Journal of Oceanography, 60, 719–729.CrossRefGoogle Scholar
Rönner, U. and Sörensen, F. (1985). Nitrogen transformation in the Baltic proper: denitrification counteracts eutrophication. Ambio, 14, 134–138.Google Scholar
Roubeix, V. and Lancelot, C. (2008). Effect of salinity on growth, cell size and silicification of an euryhaline freshwater diatom, Cyclotella meneghiniana, Kütz. Transitional Water Bulletin, 1, 31–38.Google Scholar
Rousseau, V., Leynaert, A., Daoud, N. and Lancelot, C. (2002). Diatom succession, silicification and silicic acid availability in Belgian coastal waters (Southern North Sea). Marine Ecology Progress Series, 236, 61–73.CrossRefGoogle Scholar
Rousseau, V., Breton, E., Wachter, B.et al. (2004). Identification of Belgian maritime zones affected by eutrophication (IZEUT). Towards the establishment of ecological criteria for the implementation of the OSPAR Common Procedure to combat eutrophication. Belgian Science Policy Publications, 77.
Russell, K. M., Keene, W. C., Maben, J. R., Galloway, J. N. and Moody, J. L. (2003). Phase partitioning and dry deposition of atmospheric nitrogen at the mid-Atlantic U.S. coast. Journal of Geophysical Research, 108, 1–1–1–16, doi:10.1029/2003JD003736.CrossRefGoogle Scholar
Ruttenberg, K. C. (2003). The Global Phosphorus Cycle. Elsevier, New York.CrossRefGoogle Scholar
Ruttenberg, K. C. and Berner, R. A. (1993). Authigenic apatite formation and burial in sediments from non-upwelling continental margins. Geochimica et Cosmochimica Acta, 57, 991–1007.CrossRefGoogle Scholar
Sambrotto, R. N., Savidge, G., Robinson, C.et al. (1993). Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature, 363, 248–250.CrossRefGoogle Scholar
Sandroni, V., Raimbault, P., Migon, C. and Garcia, N. E. G. (2007). Dry atmospheric deposition and diazotrophy as sources of new nitrogen to northwestern Mediterranean oligotrophic surface waters. Deep-Sea Research – Part I, 54, 1859–1870.CrossRefGoogle Scholar
Sanudo-Wilhelmy, S. A., Kusta, A. B., Gobler, C. J.et al. (2001). Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic ocean. Nature, 411, 55–59.CrossRefGoogle ScholarPubMed
Schartau, M., Engel, A., Schröter, J.et al. (2007). Modelling carbon overconsumption and the formation of extracellular particulate organic carbon. Biogeosciences, 4, 433–454.CrossRefGoogle Scholar
Schenau, S. J. and Lange, G. J. (2000). A novel chemical method to quantify fish debris in marine sediments. Limnology and Oceanography, 45, 963–971.CrossRefGoogle Scholar
Schmidt, I., Sliekers, A. O., Schmid, M.et al. (2002). Aerobic and anaerobic ammonia oxidizing bacteria: competitors or natural partners?FEMS Microbiology Ecology, 39, 175–181.Google ScholarPubMed
Schneider, B., Engel, A. and Schlitzer, R. (2004). Effects of depth- and CO2-dependent C:N ratios of particulate organic matter (POM) on the marine carbon cycle. Global Biogeochemical Cycles, 18, 1–13.CrossRefGoogle Scholar
Schneider, B.et al. (2003). The surface water CO2 budget for the Baltic Proper: a new way to determine nitrogen fixation. Journal of Marine Systems, 42, 53–64.CrossRefGoogle Scholar
Seinfeld, J. H. and Pandis, S. N. (1998). Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. Wiley-Interscience, New York.Google Scholar
Seitzinger, S. P. and Sanders, R. W. (1997). Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication. Marine Ecology Progress Series, 159, 1–12.CrossRefGoogle Scholar
Seitzinger, S. P. and Sanders, R. W. (1999). Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton. Limnology and Oceanography, 44, 721–730.CrossRefGoogle Scholar
Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W. and Bouwman, A. F. (2005). Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Global Biogeochemical Cycles, 19, 1–11.CrossRefGoogle Scholar
Seitzinger, S., Harrison, J. A., Böhlke, J. K.et al. (2006). Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications, 16, 2064–2090.CrossRefGoogle ScholarPubMed
Shaffer, G. and Rönner, U. (1984). Denitrification in the Baltic Proper deep water. Deep-Sea Research – Part I, 31, 197–220.CrossRefGoogle Scholar
Shiganova, T. A. and Bulgakova, Y. V. (2000). Effects of gelatinous plankton on Black Sea and Sea of Azov fish and their food resources. ICES Journal of Marine Science, 57, 641–648.CrossRefGoogle Scholar
Skliris, N. and Lascaratos, A. (2004). Impacts of the Nile River damming on the thermohaline circulation and water mass characteristics of the Mediterranean Sea. Journal of Marine Systems, 52, 121–143.CrossRefGoogle Scholar
Slomp, C. P., Epping, E. H. G., Helder, W. and Raaphorst, W. (1996). A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. Journal of Marine Research, 54, 1179–1205.CrossRefGoogle Scholar
Slomp, C. P., Malschaert, J. F. P. and Raaphorst, W. (1998). The role of sorption in sediment-water exchange of phosphate in North Sea continental margin sediments. Limnology and Oceanography, 43, 832–846.CrossRefGoogle Scholar
Slomp, C. P. and Cappellen, P. (2004). Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 295, 64–86.CrossRefGoogle Scholar
Smith, S. V. and Hollibaugh, J. T. (1989). Carbon controlled nitrogen cycling in a marine “macrocosm”: an ecosystem scale model for managing coastal eutrophication. Marine Ecology Progress Series, 52, 103–109.CrossRefGoogle Scholar
Souchu, P., Gasc, A., Collos, Y.et al. (1998). Biogeochemical aspects of bottom anoxia in a Mediterranean lagoon (Thau, France). Marine Ecology Progress Series, 164, 135–146.CrossRefGoogle Scholar
Souvermezoglou, E. (1988). Comparaison de la distribution et du bilan d'échanges des sels nutritifs et du carbone inorganique en Méditerannée et en Mer Rouge. Oceanologica Acta, SI9 103–109.Google Scholar
Souvermezoglou, E., Hatzigeorgiou, E., Pampidis, I. and Siapsali, K. (1992). Distribution and seasonal variability of nutrients and dissolved oxygen in the northeastern Ionian Sea. Oceanologica Acta, 15, 585–594.Google Scholar
Spokes, L. J. and Jickells, T. D. (2005). Is the atmosphere really an important source of reactive nitrogen to coastal waters?Continental Shelf Research, 25, 2022–2035.CrossRefGoogle Scholar
Sterner, R. W., Andersen, T., Elser, J. J.et al. (2008). Scale-dependent carbon: nitrogen: phosphorus seston stoichiometry in marine and freshwaters. Limnology and Oceanography, 53, 1169–1180.CrossRefGoogle Scholar
Stigebrandt, A. and Gustaffson, B. G. (2007). Improvement of Baltic Proper water quality using large-scale ecological engineering. Ambio, 36, 280–286.CrossRefGoogle ScholarPubMed
Sundbäck, K. and McGlathery, K. (2005). Interactions between benthic macroalgal and microalgal mats. In: Interactions between Macro- and Microorganisms in Marine Sediments, ed. Kristensen, E., Haese, R. R. and Kostka, J. E., American Geophysical Union, Washington DC, pp. 7–29.Google Scholar
Tamminen, T. and Andersen, T. (2007). Seasonal phytoplankton nutrient limitation patterns as revealed by bioassays over Baltic Sea gradients of salinity and eutrophication. Marine Ecology Progress Series, 340, 121–138.CrossRefGoogle Scholar
Tartari, G., Milan, C. and Felli, M. (1991). Idrochimica dei nutrienti. Quaderni Instituto di Ricerca Sulle Acque, 92, 1–29.Google Scholar
Taylor, G. T., Iabichella, M., Ho, T. -Y. et al. (2001). Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant mid-water source of organic carbon production. Limnology and Oceanography, 46, 148–163.CrossRefGoogle Scholar
Tett, P., Gilpin, L., Svendsen, H.et al. (2003). Eutrophication and some European waters of restricted exchange. Continental Shelf Research, 23, 1635–1671.CrossRefGoogle Scholar
Thamdrup, B. and Dalsgaard, T. (2002). Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology, 68, 1312–1318.CrossRefGoogle Scholar
Thomas, H. and Schneider, B. (1999). The seasonal cycle of carbon dioxide in Baltic Sea surface waters. Journal of Marine Systems, 22, 53–67.CrossRefGoogle Scholar
Thompson, R. C., Crowe, T. P. and Hawkins, S. (2002). Rocky intertidal communities: past environmental changes, present status and predictions for the next 25 years. Environmental Conservation, 29, 168–191.CrossRefGoogle Scholar
Toggweiler, J. R. (1993). Carbon overconsumption. Nature, 363, 210–211.CrossRefGoogle Scholar
Tuominen, L., Heinänen, A., Kuparinen, J. and Nielsen, L. P. (1998). Spatial and temporal variability of denitrification in the sediments of the northern Baltic Proper. Marine Ecology Progress Series, 172, 13–24.CrossRefGoogle Scholar
Turner, R. E., Qureshi, N. A., Rabalais, N. N.et al. (1998). Fluctuating silicate:nitrate ratios and coastal plankton food webs. Proceedings of the National Academy of Sciences of the USA, 95, 13048–13050.CrossRefGoogle ScholarPubMed
Turner, R. E. and Rabalais, N. N. (1994). Evidence for coastal eutrophication near the Mississippi River Delta. Nature, 368, 619–621.CrossRefGoogle Scholar
Turner, R. E., Rabalais, N. N., Justic, D. and Dortch, Q. (2003). Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry, 64, 297–317.CrossRefGoogle Scholar
Twomey, L. J., Piehler, M. F. and Paerl, H. W. (2005). Phytoplankton uptake of ammonium, nitrate and urea in the Neuse River estuary, NC, USA. Hydrobiologia, 533, 123–134.CrossRefGoogle Scholar
Tyrrell, T. (1999). The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400, 525–531.CrossRefGoogle Scholar
,UNEP-MAP (2003). Riverine Transport of Water, Sediments and Pollutants to the Mediterranean Sea, MAP Technical Series no. 141.Google Scholar
,UNEP-MAP/RAC/CP (2004). Guidelines for the Application of Best Environmental Practices (BEPs) for the Rational Use of Fertilizers and the Reduction of Nutrient Loss from Agriculture for the Mediterranean Region, MAP Technical Series no. 143.
,UNEP/FAO/WHO (1996). Assessment of the state of eutrophication in the Mediterranean Sea, MAP Technical Series no. 106.Google Scholar
,European Union (1991). Nitrates Directive. Directive 91/676/EEC.
Usher, C. R., Michel, A. E. and Grassian, V. H. (2003). Reactions on mineral dust. Chemical Reviews, 103, 4883–4939.CrossRefGoogle ScholarPubMed
Vahtera, E., Conley, D. J., Gustafsson, B. G.et al. (2007). Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio, 36, 186–194.CrossRefGoogle ScholarPubMed
Vaquer, R. C. D. (2008). Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the USA, 105, 15452–15457.CrossRefGoogle Scholar
Veldhuis, M. J. W. and Admiraal, W. (1987). Influence of phosphate depletion on the growth and colony formation of Phaeocystis pouchetii. Marine Biology, 95, 47–54.CrossRefGoogle Scholar
Veldhuis, M. J. W., Colijn, F. and Admiraal, W. (1991). Phosphate utilization in Phaeocystis pouchetii (Haptophyceae). Marine Ecology Progress Series, 12, 53–62.CrossRefGoogle Scholar
Vitousek, P. M., Mooney, H. A., Lubchenko, J. and Melillo, J. M. (1997). Human domination of Earth's ecosystems. Science, 277, 494–499.CrossRefGoogle Scholar
Vogt, H. and Schramm, W. (1991). Conspicuous decline of fucus in Kiel Bay (Western Baltic): what are the causes?Marine Ecology Progress Series, 69, 1105–1118.CrossRefGoogle Scholar
Voss, M., Emeis, K. C.Hille, S., Neumann, T. and Dippner, J. W. (2005). Nitrogen cycle of the Baltic Sea from an isotopic perspective. Global Biogeochemical Cycles, 19, 1–16.CrossRefGoogle Scholar
Waldbusser, G. G. and Marinelli, R. L. (2006). Macrofaunal modification of porewater advection: role of species function, species interaction, and kinetics. Marine Ecology Progress Series, 311, 217–231.CrossRefGoogle Scholar
Walsh, J. J. (1991). Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350, 53–55.CrossRefGoogle Scholar
Ward, B. B., Devol, A. H., Rich, J. J.et al. (2009). Denitrification as the dominant nitrogen loss process in the Arabian Sea, Nature, 461, 78–82.CrossRefGoogle ScholarPubMed
Wasmund, N., Voss, M. and Lochte, K. (2001). Evidence of nitrogen fixation by non-heterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation. Marine Ecology Progress Series, 214, 1–14.CrossRefGoogle Scholar
Weisse, T., Tande, K., Verity, P., Hansen, F. and Gieskes, W. W. C. (1994). The trophic significance of Phaeocystis blooms. Journal of Marine Systems, 5, 67–79.CrossRefGoogle Scholar
Westberry, T. K. and Siegel, D. A. (2006). Spatial and temporal distribution of Trichodesmium blooms in the world's oceans. Global BiogeochemIcal Cycles, 20.CrossRefGoogle Scholar
Wu, R. S. S. (2002). Hypoxia: from molecular responses to ecosystem responses. Marine Pollution Bulletin, 45, 35–45.CrossRefGoogle ScholarPubMed
Yilmaz, A. and Tugrul, S. (1998). The effect of cold- and warm-core eddies on the distribution and stoichiometry of dissolved nutrients in the northeastern Mediterranean. Journal of Marine Systems, 16, 253–268.CrossRefGoogle Scholar
Zaitsev, Y. and Mamaev, V. O. (1997). Biological diversity in the Black Sea: a study of change and decline. Black Sea Environmental Series, 3, 208.Google Scholar
Zhang, Y., Zheng, L., Liu, X.et al. (2008). Evidence for organic N deposition and its anthropogenic sources in China. Atmospheric Environment, 42, 1035–1041.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×