Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T05:45:50.416Z Has data issue: false hasContentIssue false

11 - Molecular time scale of diversification of feeding strategy and morphology in New World Leaf-Nosed Bats (Phyllostomidae): a phylogenetic perspective

Published online by Cambridge University Press:  05 June 2012

Gregg F. Gunnell
Affiliation:
Duke University, North Carolina
Nancy B. Simmons
Affiliation:
American Museum of Natural History, New York
Get access

Summary

Introduction

Diversification of feeding strategies within each of the 19 chiropteran families (Hoofer and Van Den Bussche, 2003; Van Den Bussche and Hoofer, 2004; Simmons, 2005) typically is limited to one (13 families) or two (five families) food sources. The family Phyllostomidae, however, represents an exception to this pattern with six distinct feeding strategies: sanguivory, insectivory, frugivory, nectivory, carnivory (feeding on vertebrates) and omnivory.

Among families of bats, phyllostomids comprise the largest number of genera (56) and the third largest number of species (160+) (Simmons, 2005). They are distributed throughout tropical and subtropical regions of North and South America and have been highly successful in exploiting a diverse array of life-history strategies. Included among its members are three species of obligate sanguivores, a feeding strategy unknown in vertebrates other than fish (Figure 11.1). Among phyllostomids additional examples of feeding specialization exist, including subsisting exclusively on insects, as well as primarily on fruit, nectar, frogs, rodents and other vertebrates. Such specializations are remarkable when viewed in the context of the concomitant suite of adaptations associated with the sensory apparatus, locomotion, digestion, dentition, kidney function and reproduction, among others (Griffiths, 1982; Greenhall and Schmidt, 1988: Fleming et al., 2005) that must be favored by directional natural selection for successful exploitation of new ecological opportunities. No other clade of mammals with roots in the Eocene displays such radical evolutionary modifications.

Type
Chapter
Information
Evolutionary History of Bats
Fossils, Molecules and Morphology
, pp. 385 - 409
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, R. J. 1967 Karyotypes of bats of the family Phyllostomidae and their taxonomic implicationsSouthwestern Naturalist 12 407CrossRefGoogle Scholar
Baker, R. J. 1979 KaryologyBiology of Bats of the New World Family of Phyllostomatidae, Part IIIBaker, R. J.Jones, J. K.Carter, D. C.Special Publication of the Museum of Texas Tech University 16 107Google Scholar
Baker, R. J.Bass, R. A. 1979 Evolutionary relationship of the Brachyphyllinae to glossophagine genera and Journal of Mammalogy 60 364CrossRefGoogle Scholar
Baker, R. J.Porter, C. A.Patton, J. C.Van Den Bussche, R. A. 2000 Systematics of bats of the family Phyllostomidae based on DNA sequencesOccasional Papers, Museum of Texas Tech University 202 1Google Scholar
Baker, R. J.Hoofer, S. R.Porter, C. A.Van Den Bussche, R. A. 2003 Diversification among New World Leaf-Nosed Bats: an evolutionary hypothesis and classification inferred from digenomic congruence of DNA sequenceOccasional Papers, Museum of Texas Tech University 230 1Google Scholar
Bininda-Emonds, O. R. P. 2007 Fast genes and slow clades: comparative rates of molecular evolution in mammalsEvolutionary Bioinformatics 2007 59Google Scholar
Bininda-Emonds, O. R. P.Cardillo, M.Jones, K. E. 2007 The delayed rise of present-day mammalsNature 446 507CrossRefGoogle ScholarPubMed
Burnham, R. J.Johnson, K. R. 2004 South American palaeobotany and the origins of neotropical rainforestsPhilosophical Transactions of the Royal Society of London B 359 1595CrossRefGoogle ScholarPubMed
Carroll, S. B. 2000 Endless forms: the evolution of gene regulation and morphological diversityCell 101 577CrossRefGoogle ScholarPubMed
Carstens, B. C.Lundrigan, B. L.Myers, P. 2002 A phylogeny of the Neotropical nectar-feeding bats (Chiroptera: Phyllostomidae) based on morphological and molecular dataJournal of Mammalian Evolution 9 23CrossRefGoogle Scholar
Czaplewski, N. J.Takai, M.Naeher, T. M.Shigehara, N.Setoguchi, T. 2003 Additional bats from the middle Miocene La Venta Fauna of ColombiaRevista de la Academia Colombiana de Ciencias Exactas, Físicas, y Naturales 27 263Google Scholar
Darwin, C. 1859 On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for LifeLondonJohn MurrayGoogle Scholar
Datzmann, T.von Helversen, O.Mayer, F. 2010 Evolution on nectivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia)BMC Evolutionary Biology 10 165CrossRefGoogle Scholar
Dávalos, L. M. 2007 Short-faced bats (Phyllostomidae: Stenodermatina): a Caribbean radiation of strict frugivoresJournal of Biogeography 34 364CrossRefGoogle Scholar
Eldredge, N.Gould, S. J. 1972 Punctuated equilibria: an alternative to phyletic gradualismModels in PaleobiologySchopf, T. J. M.San Francisco, CAFreeman & Cooper305Google Scholar
Fenton, M. B. 1992 Wounds and the origin of blood-feeding in batsBiological Journal of the Linnean Society 47 161CrossRefGoogle Scholar
Ferrarezi, H.Gimenez, E. A. 1996 Systematic patterns and evolution of feeding habits in Chiroptera (Archonta: Mammalia)Journal of Comparative Biology 1 75Google Scholar
Fleming, T. H. 1988 The Short-Tailed Fruit Bat: A Study in Plant-Animal InteractionsChicago, ILUniversity of Chicago PressGoogle Scholar
Fleming, T. H.Muchhala, N.Ornelas, J. F. 2005 New World nectar-feeding vertebrates: community pattern and processesContribuciones Mastozoologicas en Homenaje a Bernardo VillaSanchez-Cordero, V.Medellin, R. A.Mexico: Instituto de Biologia e Instituto de Ecologia, UNAM163Google Scholar
Fondon, J. W.Garner, H. R. 2004 Molecular origins of rapid and continuous morphological evolutionProceedings of the National Academy of Sciences, USA 101 18058CrossRefGoogle Scholar
Fondon, J. W.Garner, H. R. 2007 Detection of length-dependent effects of tandem repeat alleles by 3-D geometric decomposition of craniofacial variationDevelopment Genes and Evolution 217 79CrossRefGoogle ScholarPubMed
Furano, A. V.Hayward, B. E.Chevret, P.Catzeflis, F.Usdin, K. 1994 Amplification of the ancient murine Lx family of long interspersed repeated DNA occurred during the murine radiationJournal of Molecular Ecology 38 18Google ScholarPubMed
Gardner, A. L. 1977 Feeding habitsBiology of Bats of the New World Family Phyllostomidae, Part IIBaker, R. J.Jones, J. K.Carter, D. C.Special Publications, Museum of Texas Tech University 13 293Google Scholar
Gillete, D. D. 1975 Evolution of feeding strategies in batsTebiwa 18 39Google Scholar
Greenhall, A. M.Schmidt, U. 1988 Natural History of Vampire BatsBoca Raton, FLCRC PressGoogle Scholar
Griffiths, T. A. 1982 Systematics of the New World nectar-feeding bats (Mammalia, Phyllostomidae), based on the morphology of the hyoid and lingual regionsAmerican Museum Novitates 2742 1Google Scholar
Haiduk, M. W.Baker, R. J. 1982 Cladistical analysis of the G-banded chromosomes of nectar-feeding bats (Glossophaginae: Phyllostomidae)Systematic Zoology 31 252CrossRefGoogle Scholar
Hershkovitz, M. A.Zimmer, E. A. 1997 On evolutionary origins of the cactiTaxon 46 217CrossRefGoogle Scholar
Hiethaus, E. R. 1982 Coevolution between bats and plantsEcology of BatsKunz, T. H.New YorkPlenum Press327CrossRefGoogle Scholar
Hoekstra, H. E.Coyne, J. 2007 The locus of evolution: evo devo and the genetics of adaptationEvolution 61 995CrossRefGoogle ScholarPubMed
Hoffmann, F. G.Hoofer, S. R.Baker, R. J. 2008 Molecular dating of the diversification of Phyllostominae bats based on nuclear and mitochondrial DNA sequencesMolecular Phylogenetics and Evolution 49 653CrossRefGoogle ScholarPubMed
Hoofer, S. R.Van Den Bussche, R. A. 2003 Molecular phylogenetics of the chiropteran family VespertilionidaeActa Chiropterologica 5 1CrossRefGoogle Scholar
Jones, G. 2010 Molecular evolution: gene convergence in echolocating mammalsCurrent Biology 20 62CrossRefGoogle ScholarPubMed
Jones, K. E.Purvis, A.MacLarnon, A.Bininda-Emonds, O. R. P.Simmons, N. B. 2002 A phylogenetic supertree of the bats (Mammalia: Chiroptera)Biological Reviews 77 223CrossRefGoogle Scholar
Jones, K. E.Bininda-Edmonds, O. R. P.Gittleman, J. L. 2005 Bats, clocks, and rocks: diversification patterns in ChiropteraEvolution 59 2243CrossRefGoogle ScholarPubMed
Kawasaki, K.Buchanan, A. V.Weiss, K. M. 2007 Gene duplication and the evolution of vertebrate skeletal mineralizationCells Tissues Organs 186 7CrossRefGoogle ScholarPubMed
Kirschner, M.Gerhart, J. 1998 EvolvabilityProceeding of the National Academy of Sciences, USA 95 8420CrossRefGoogle ScholarPubMed
Koopman, K. F. 1993 Order ChiropteraMammals Species of the World: A Taxonomic and Geographic ReferenceWilson, D. E.Reeder, D. M.Washington, DCSmithsonian Institution Press137Google Scholar
Lewis-Oritt, N.Van Den Bussche, R. A.Baker, R. J. 2001 Molecular evidence for evolution of piscivoryNoctilioChiroptera:Noctilionidae748Google Scholar
Li, Y.Lui, S.Shi, P.Zhang, J. 2010 The hearing gene unites echolocating bats and whalesCurrent Biology 20 55CrossRefGoogle ScholarPubMed
Lui, Y.Cotton, J. A.Shen, B. 2010 Convergent sequence evolution between echolocating bats and dolphinsCurrent Biology 20 53Google Scholar
Muchhala, N. 2006 Nectar bat stows huge tongue in its rib cageNature 444 701CrossRefGoogle ScholarPubMed
Muchhala, N.Mena, P.Albuja, L. 2005 A new species of (Chiroptera: Phyllostomidae) from the Ecuadorian AndesJournal of Mammalogy 86 457CrossRefGoogle Scholar
Ohno, S.Wolf, U.Atkin, N. B. 1968 Evolution from fish to mammals by gene duplicationHereditas 59 169CrossRefGoogle Scholar
Osborn, H. F. 1910 The Age of Mammals in Europe, Asia, and North AmericaNew YorkThe Macmillan CompanyCrossRefGoogle Scholar
Pascale, E.Liu, C.Valle, E.Usdin, K.Furano, A. V. 1993 The evolution of long interspersed repeated DNA (L1, LINE 1) as revealed by the analysis of an ancient rodent L1 DNA familyJournal of Molecular Evolution 36 9CrossRefGoogle ScholarPubMed
Phillips, C. J. 1971 The dentition of glossophagine bats: development, morphological characteristics, variation, pathology, and evolutionMiscellaneous Publications of the Museum of Natural History, University of Kansas 54 1Google Scholar
Phillips, C. J. 1996 Cells, molecules, and adaptive radiation in mammalsContributions in Mammalogy: A Memorial Volume Honoring Dr. J. K. Jones, JrBaker, R. J.Genoways, H. H.Lubbock, TXMuseum of Texas Tech University1Google Scholar
Phillips, C. J.Tandler, B.Nagato, T. 1993 Evolutionary divergence of salivary gland acinar cells: a format for understanding molecular evolutionBiology of Salivary GlandsDoborosieski-Vergona, K.Boca Raton. FLCRC Press39Google Scholar
Posada, D.Crandall, K. 1998 MODELTEST: testing the model of DNA substitutionBioinformatics 14 817CrossRefGoogle ScholarPubMed
Purvis, A. 1995 A composite estimate of primate phylogenyPhilosophical Transactions of the Royal Society of London B 348 405CrossRefGoogle ScholarPubMed
Renner, S. S. 2005 Relaxed molecular clocks for dating historical plant dispersal eventsTrends in Plant Science 10 550CrossRefGoogle ScholarPubMed
Schutt, Jr., W. A. 1998 Chiropteran hindlimb morphology and the origin of blood feeding in batsBat Biology and ConservationKunz, T. H.Racey, P. A.Washington, DCSmithsonian Institution Press157Google Scholar
Siemers, B. M.Stilz, P.Schnitzler, H. 2001 The acoustic advantage of hunting at low heights above water: behavioural experiments on the European “trawling” bats and Journal of Experimental Biology 204 3843Google Scholar
Simmons, N. B. 2005 An Eocene big bang for batsScience 307 527CrossRefGoogle ScholarPubMed
Simmons, N. B.Conway, T. M. 2003 Evolution of ecological diversity in batsBat EcologyKunz, T. H.Fenton, M. B.Chicago, ILUniversity of Chicago Press493Google Scholar
Slaughter, B. H. 1970 Evolutionary trends of chiropteran dentitionsAbout BatsSlaughter, B. H.Walton, D. W.Dallas, TXSouthern Methodist University Press51Google Scholar
Smith, J. D.Hood, C. S. 1984 Genealogy of the New World nectar-feeding bats reexamined: a reply to GriffithsSystematic Zoology 33 435CrossRefGoogle Scholar
Straney, D. O.Smith, M. H.Greenbaum, I. F.Baker, R. J. 1979 Biochemical geneticsBiology of Bats of the New World Family of Phyllostomatidae, Part IIIBaker, R. J.Jones, J. K.Carter, D. C.Special Publication of the Museum of Texas Tech University 16 157Google Scholar
Sutter, N. B.Bustamante, C. D.Chase, K. 2007 A single allele is a major determinant of small size in dogsScience 316 112CrossRefGoogle ScholarPubMed
Swofford, D. L. 2002 PAUP*Phylogenetic analysis using parsimony (*and other methods). Version 4Sunderland, MASinauer Associates, IncGoogle Scholar
Teeling, E. C.Springer, M. S.Madsen, O. 2005 A molecular phylogeny for bats illuminates biogeography and the fossil recordScience 307 580CrossRefGoogle ScholarPubMed
Thompson, D 'A. W. 1917 On Growth and FormNew YorkDoverCrossRefGoogle Scholar
Van Den Bussche, R. A.Hoofer, S. R. 2004 Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxaJournal of Mammalogy 85 3212.0.CO;2>CrossRefGoogle Scholar
Warner, R. M. 1983 Karyotypic megaevolution and phylogenetic analysis: New World nectar-feeding bats revisitedSystematic Zoology 32 279CrossRefGoogle Scholar
Wetterer, A. L.Rockman, M. V.Simmons, N. B. 2000 Phylogeny of phyllostomid bats: data from diverse morphological systems, sex chromosomes, and restriction sitesBulletin of the American Museum of Natural History 248 12.0.CO;2>CrossRefGoogle Scholar
Wilson, A. C.Sarich, V. M.Maxon, L. R. 1974 The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein, and anatomical evolutionProceedings of the National Academy of Sciences, USA 71 3028CrossRefGoogle ScholarPubMed
Wilson, A. C.Bush, G. L.Case, S. M.King, M. C. 1975 Social structuring of mammalian populations and rate of chromosomal evolutionProceedings of the National Academy of Sciences, USA 72 5061CrossRefGoogle ScholarPubMed
Wren, J. D.Forgacs, E.Fondon, III, J. W. 2000 Repeat polymorphisms within gene regions: phenotypic and evolutionary implicationsAmerican Journal of Human Genetics 67 345CrossRefGoogle ScholarPubMed
Zachos, J.Pagani, M.Sloan, L.Thomas, E.Billups, K. 2001 Trends, rhythms, and aberrations in global climate 65 Ma to presentScience 292 686CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×