Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T11:38:29.276Z Has data issue: false hasContentIssue false

Chapter 17 - Alzheimer’s Disease as a Disease of Evolutionary Mismatch, with a Focus on Reproductive Life History

Published online by Cambridge University Press:  08 September 2022

Riadh Abed
Affiliation:
Mental Health Tribunals, Ministry of Justice, UK
Paul St John-Smith
Affiliation:
Hertfordshire Partnership University NHS Foundation Trust, UK
Get access

Summary

Risk factors for Alzheimer’s disease, such as cardiovascular, metabolic and inflammatory problems, were probably less prevalent throughout much of human history compared to today in post-industrial societies. Therefore, I explore the possibility that individuals today have greater Alzheimer’s disease risk compared to our age-matched, pre-modern counterparts. Additionally, a critical way in which human physiology has changed across history relates to dramatic changes in female reproductive life history norms. Reproductive life history may exert cumulative effects across an individual’s lifespan, bestowing considerable influence on geriatric disease risk. A growing body of research links women’s reproductive life histories with Alzheimer’s disease risk. Here, I briefly discuss ways in which aspects of female reproductive life history (e.g. reproductive span, pregnancy and breastfeeding) might alter physiological pathways implicated in Alzheimer’s disease aetiology, as well as how each of these aspects of female reproductive life history have shifted across our species’ evolutionary past. I also explore the connections between the apolipoprotein E gene, its context-dependent role in Alzheimer’s disease risk and its emerging role in women’s reproductive function. In summary, some aspects of pre-modern female reproductive life history patterns could indicate lower age-matched risk in the past, but further research is needed to establish the relevant biological pathways and epidemiological patterns.

Type
Chapter
Information
Evolutionary Psychiatry
Current Perspectives on Evolution and Mental Health
, pp. 260 - 275
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abyadeh, M., Heydarinejad, F., Khakpash, M., Asefi, Y. and Shab-Bidar, S. 2020. Association of apolipoprotein E gene polymorphism with preeclampsia: a meta-analysis. Hypertension in Pregnancy, 39, 196202.CrossRefGoogle ScholarPubMed
Agarwal, A., Aponte-Mellado, A., Premkumar, B. J., Shaman, A. and Gupta, S. 2012. The effects of oxidative stress on female reproduction: a review. Reproductive Biology and Endocrinology, 10, 49.Google Scholar
Andrew, M. K. and Tierney, M. C. 2018. The puzzle of sex, gender and Alzheimer’s disease: why are women more often affected than men? Women’s Health, 14, 1745506518817995.Google Scholar
Bell, A. W. and Bauman, D. E. 1997. Adaptations of glucose metabolism during pregnancy and lactation. Journal of Mammary Gland Biology and Neoplasia, 2, 265278.CrossRefGoogle ScholarPubMed
Berchieri-Ronchi, C., Kim, S., Zhao, Y., Correa, C., Yeum, K.-J. and Ferreira, A. 2011. Oxidative stress status of highly prolific sows during gestation and lactation. Animal, 5, 17741779.CrossRefGoogle ScholarPubMed
Bowlby, J. 1969. Attachment and Loss. New York: Basic Books.Google Scholar
Brand, J. S., Van Der Schouw, Y. T., Onland-Moret, N. C., Sharp, S. J., Ong, K. K., Khaw, K.-T., Ardanaz, E., Amiano, P., Boeing, H., Chirlaque, M.-D., Clavel-Chapelon, F., Crowe, F. L., De Lauzon-Guillain, B., Duell, E. J., Fagherazzi, G., Franks, P. W., Grioni, S., Groop, L. C., Kaaks, R., Key, T. J., Nilsson, P. M., Overvad, K., Palli, D., Panico, S., Quirós, J. R., Rolandsson, O., Sacerdote, C., Sánchez, M.-J., Slimani, N., Teucher, B., Tjonneland, A., Tumino, R., Van Der, A. D. L., Feskens, E. J. M., Langenberg, C., Forouhi, N. G., Riboli, E. and Wareham, N. J. 2013. Age at menopause, reproductive life span, and type 2 diabetes risk: results from the EPIC-InterAct study. Diabetes Care, 36, 10121019.Google Scholar
Brown, C. M., Choi, E., Xu, Q., Vitek, M. P. and Colton, C. A. 2008. The APOE4 genotype alters the response of microglia and macrophages to 17β-estradiol. Neurobiology of Aging, 29, 17831794.Google Scholar
Burt, T. D., Agan, B. K., Marconi, V. C., He, W., Kulkarni, H., Mold, J. E., Cavrois, M., Huang, Y., Mahley, R. W. and Dolan, M. J. 2008. Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE ε4/ε4 genotype accelerates HIV disease progression. Proceedings of the National Academy of Sciences of the United States of America, 105, 87188723.Google Scholar
Carroll, J. C., Rosario, E. R., Chang, L., Stanczyk, F. Z., Oddo, S., Laferla, F. M. and Pike, C. J. 2007. Progesterone and estrogen regulate Alzheimer-like neuropathology in female 3xTg-AD mice. Journal of Neuroscience, 27, 1335713365.CrossRefGoogle ScholarPubMed
Carroll, J. C., Rosario, E. R., Villamagna, A. and Pike, C. J. 2010. Continuous and cyclic progesterone differentially interact with estradiol in the regulation of Alzheimer-like pathology in female 3x transgenic-Alzheimer’s disease mice. Endocrinology, 151, 27132722.Google Scholar
Centers for Disease Control and Prevention 2021. Data, Trend and Maps. National Center for Chronic Disease Prevention and Health Promotion, Division of Nutrition, Physical Activity, and Obesity. Retrieved from www.cdc.gov/nccdphp/dnpao/data-trends-maps/index.htmlGoogle Scholar
Chakrabarti, S., Khemka, V. K., Banerjee, A., Chatterjee, G., Ganguly, A. and Biswas, A. 2015. Metabolic risk factors of sporadic Alzheimer’s disease: implications in the pathology, pathogenesis and treatment. Aging and Disease, 6, 282299.CrossRefGoogle ScholarPubMed
Chen, C. H., Mizuno, T., Elston, R., Kariuki, M. M., Hall, K., Unverzagt, F., Hendrie, H., Gatere, S., Kioy, P. and Patel, N. B. 2010. A comparative study to screen dementia and APOE genotypes in an ageing East African population. Neurobiology of Aging, 31, 732740.Google Scholar
Clavel-Chapelon, F. 2002. Cumulative number of menstrual cycles and breast cancer risk: results from the E3N cohort study of French women. Cancer Causes & Control, 13, 831838.Google Scholar
Colucci, M., Cammarata, S., Assini, A., Croce, R., Clerici, F., Novello, C., Mazzella, L., Dagnino, N., Mariani, C. and Tanganelli, P. 2006. The number of pregnancies is a risk factor for Alzheimer’s disease. European Journal of Neurology, 13, 13741377.CrossRefGoogle ScholarPubMed
Corbo, R. M., Scacchi, R. and Cresta, M. 2004a. Differential reproductive efficiency associated with common apolipoprotein E alleles in postreproductive-aged subjects. Fertility and Sterility, 81, 104107.CrossRefGoogle ScholarPubMed
Corbo, R. M., Ulizzi, L., Scacchi, R., Martinez-Labarga, C. and De Stefano, G. 2004b. Apolipoprotein E polymorphism and fertility: a study in pre-industrial populations. Molecular Human Reproduction, 10, 617620.Google Scholar
Corder, E. H., Robertson, K., Lannfelt, L., Bogdanovic, N., Eggertsen, G., Wilkins, J. and Hall, C. 1998. HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy. Nature Medicine, 4, 11821184.Google Scholar
Dahlgren, J. 2006. Pregnancy and insulin resistance. Metabolic Syndrome and Related Disorders, 4, 149152.CrossRefGoogle ScholarPubMed
Dana Lynn, C. 2014. Hearth and campfire influences on arterial blood pressure: defraying the costs of the social brain through fireside relaxation. Evolutionary Psychology, 12, 9831003.Google Scholar
De Bruijn, R. F. A. G. and Ikram, M. A. 2014. Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Medicine, 12, 130.CrossRefGoogle ScholarPubMed
Depypere, H., Vierin, A., Weyers, S. and Sieben, A. 2016. Alzheimer’s disease, apolipoprotein E and hormone replacement therapy. Maturitas, 94, 98105.CrossRefGoogle ScholarPubMed
Durazzo, T. C., Mattsson, N., Weiner, M. W. and Alzheimer’s Disease Neuroimaging Initiative 2014. Smoking and increased Alzheimer’s disease risk: a review of potential mechanisms. Alzheimer’s & Dementia, 10, S122S145.CrossRefGoogle Scholar
Eaton, S. B., Pike, M. C., Short, R. V., Lee, N. C., Trussell, J., Hatcher, R. A., Wood, J. W., Worthman, C. M., Jones, N. G. B. and Konner, M. J. 1994. Women’s reproductive cancers in evolutionary context. Quarterly Review of Biology, 69, 353367.Google Scholar
Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., Myers, R. H., Pericak-Vance, M. A., Risch, N. and Van Duijn, C. M. 1997. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. JAMA, 278, 13491356.Google Scholar
Farrer, L. A., Friedland, R. P., Bowirrat, A., Waraska, K., Korczyn, A. and Baldwin, C. T. 2003. Genetic and environmental epidemiology of Alzheimer’s disease in Arabs residing in Israel. Journal of Molecular Neuroscience, 20, 207212.CrossRefGoogle ScholarPubMed
Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Hasegawa, K., Hendrie, H., Huang, Y., Jorm, A., Mathers, C., Menezes, P. R., Rimmer, E. and Scazufca, M. 2005. Global prevalence of dementia: a Delphi consensus study. Lancet, 366, 21122117.Google Scholar
Flint, M. 1978. Is there a secular trend in age of menopause? Maturitas, 1, 133139.CrossRefGoogle Scholar
Fox, M. 2012. Grandma Knows Best: The Evolution of Post-menopausal Longevity and the Preservation of Cognitive Function. PhD thesis. Cambridge: University of Cambridge.Google Scholar
Fox, M. 2018. ‘Evolutionary medicine’ perspectives on Alzheimer’s disease: review and new directions. Ageing Research Reviews, 47, 140148.Google Scholar
Fox, M., Berzuini, C. and Knapp, L. A. 2013a. Cumulative estrogen exposure, number of menstrual cycles, and Alzheimer’s risk in a cohort of British women. Psychoneuroendocrinology, 38, 29732982.CrossRefGoogle Scholar
Fox, M., Berzuini, C. and Knapp, L. A. 2013b. Maternal breastfeeding history and Alzheimer’s disease risk. Journal of Alzheimer’s Disease, 37, 809821.Google Scholar
Fox, M., Berzuini, C., Knapp, L. A. and Glynn, L. M. 2018. Women’s pregnancy life history and Alzheimer’s risk: can immunoregulation explain the link? American Journal of Alzheimer’s Disease & Other Dementias, 33, 516526.Google Scholar
Fox, M., Knorr, D. A. and Haptonstall, K. M. 2019. Alzheimer’s disease and symbiotic microbiota: an evolutionary medicine perspective. Annals of the New York Academy of Sciences, 1449, 324.Google Scholar
Fox, M., Siddarth, P., Oughli, H., Nguyen, S., Milillo, M., Aguilar, Y., Ercoli, L. and Lavretsky, H. 2021. Women who breastfeed exhibit cognitive benefits after age 50. Evolution, Medicine, and Public Health, 9, 322331.Google Scholar
Fratiglioni, L., Wang, H.-X., Ericsson, K., Maytan, M. and Winblad, B. 2000. Influence of social network on occurrence of dementia: a community-based longitudinal study. Lancet, 355, 13151319.CrossRefGoogle ScholarPubMed
Gavrilov, L. A. and Gavrilova, N. S. 2000. Validation of exceptional longevity. Population and Development Review, 26, 403.Google Scholar
Geerlings, M. I., Ruitenberg, A., Witteman, J. C. M., Van Swieten, J. C., Hofman, A., Van Duijn, C. M., Breteler, M. M. B. and Launer, L. J. 2001. Reproductive period and risk of dementia in postmenopausal women. JAMA, 285, 14751481.CrossRefGoogle ScholarPubMed
Gerdes, L. U., Gerdes, C., Hansen, P. S., Klausen, I. C. and Færgeman, O. 1996. Are men carrying the apolipoprotein ε4- or ε2 allele less fertile than ε3ε3 genotypes? Human Genetics, 98, 239242.Google Scholar
Glass, D. J. and Arnold, S. E. 2012. Some evolutionary perspectives on Alzheimer’s disease pathogenesis and pathology. Alzheimer’s and Dementia, 8, 343351.CrossRefGoogle ScholarPubMed
Green, R. C., Cupples, L. A., Kurz, A., Auerbach, S., Go, R., Sadovnick, D., Duara, R., Kukull, W. A., Chui, H., Edeki, T., Griffith, P. A., Friedland, R. P., Bachman, D. and Farrer, L. 2003. Depression as a risk factor for Alzheimer disease: the MIRAGE study. Archives of Neurology, 60, 753759.Google Scholar
Greenfield, J. P., Leung, L. W., Cai, D., Kaasik, K., Gross, R. S., Rodriguez-Boulan, E., Greengard, P. and Xu, H. 2002. Estrogen lowers Alzheimer β-amyloid generation by stimulating trans-Golgi network vesicle biogenesis. Journal of Biological Chemistry, 277, 1212812136.Google Scholar
Gunten, A., Clerc, M., Tomar, R. and John-Smith, P. 2018. Evolutionary considerations on aging and Alzheimer’s disease. Journal of Alzheimer’s Disease and Parkinsonism, 8, 423.CrossRefGoogle Scholar
Gureje, O., Ogunniyi, A., Baiyewu, O., Price, B., Unverzagt, F. W., Evans, R. M., Smith-Gamble, V., Lane, K. A., Gao, S. and Hall, K. S. 2005. APOE ε4 is not associated with Alzheimer’s disease in elderly Nigerians. Annals of Neurology, 59, 182185.Google Scholar
Gurven, M. and Kaplan, H. 2007. Longevity among hunter-gatherers: a cross-cultural examination. Population and Development Review, 33, 321365.Google Scholar
Gurven, M., Kaplan, H., Winking, J., Finch, C. and Crimmins, E. M. 2008. Aging and inflammation in two epidemiological worlds. Journals of Gerontology: Series A, 63, 196-199.Google Scholar
Hahn-Holbrook, J., Dunkel Schetter, C. and Haselton, M. 2013The advantages and disadvantages of breastfeeding for maternal mental and physical health. In: Spiers, M., Geller, P. and Kloss, J. (eds.), Women’s Health Psychology. Hoboken, NJ: Wiley, pp. 414439.Google Scholar
Hawkes, K., O’Connell, J. F. and Blurton Jones, N. G. 1997. Hadza women’s time allocation, offspring provisioning, and the evolution of long postmenopausal life spans. Current Anthropology, 38, 551577.Google Scholar
Hawkes, K., O’Connell, J. F., Blurton Jones, N. G., Alvarez, H. and Charnov, E. L. 2000. The grandmother hypothesis and human evolution. In: Cronk, L., Chagnon, N. and Irons, W. (eds.), Adaptation and Human Behavior: An Anthropological Perspective. Piscataway, NJ: Aldine Transaction, pp. 231252.Google Scholar
He, L.-N., Recker, R. R., Deng, H.-W. and Dvornyk, V. 2009. A polymorphism of apolipoprotein E (APOE) gene is associated with age at natural menopause in Caucasian females. Maturitas, 62, 3741.Google Scholar
Helmer, C., Damon, D., Letenneur, L., Fabrigoule, C., Barberger-Gateau, P., Lafont, S., Fuhrer, R., Antonucci, T., Commenges, D. and Orgogozo, J. 1999. Marital status and risk of Alzheimer’s disease: a French population-based cohort study. Neurology, 53, 19531953.Google Scholar
Hesson, J. 2012. Cumulative estrogen exposure and prospective memory in older women. Brain and Cognition, 80, 8995.Google Scholar
Heys, M., Jiang, C., Cheng, K. K., Zhang, W., Yeung, S. L. A., Lam, T. H., Leung, G. M. and Schooling, C. M. 2011. Life long endogenous estrogen exposure and later adulthood cognitive function in a population of naturally postmenopausal women from Southern China: the Guangzhou Biobank Cohort Study. Psychoneuroendocrinology, 36, 864873.Google Scholar
Himes, N. E. 1970. Medical History of Contraception. New York: Schocken Books.Google Scholar
Holmen, K., Ericsson, K. and Winblad, B. 2000. Social and emotional loneliness among non-demented and demented elderly people. Archives of Gerontology and Geriatrics, 31, 177192.Google Scholar
Holtzman, D. M., Morris, J. C. and Goate, A. M. 2011. Alzheimer’s disease: the challenge of the second century. Science Translational Medicine, 3, 77sr1.CrossRefGoogle ScholarPubMed
Hong, X., Zhang, X. and Li, H. 2001. A case-control study of endogenous estrogen and risk of Alzheimer’s disease. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi, 22, 379382.Google ScholarPubMed
Hornsey, I. S. 2012. Alcohol and Its Role in the Evolution of Human Society. Cambridge: Royal Society of Chemistry.Google Scholar
Huang, T., Shafrir, A. L., Eliassen, A. H., Rexrode, K. M. and Tworoger, S. S. 2019. Estimated number of lifetime ovulatory years and its determinants in relation to levels of circulating inflammatory biomarkers. American Journal of Epidemiology, 189, 660670.Google Scholar
Huang, W. J., Zhang, X. and Chen, W. W. 2016. Role of oxidative stress in Alzheimer’s disease (review). Biomedical Reports, 4, 519522.Google Scholar
Imtiaz, B., Tuppurainen, M., Rikkonen, T., Kivipelto, M., Soininen, H., Kröger, H. and Tolppanen, A.-M. 2017. Postmenopausal hormone therapy and Alzheimer disease: a prospective cohort study. Neurology, 88, 10621068.Google Scholar
Jasienska, G., Ellison, P. T., Galbarczyk, A., Jasienski, M., Kalemba-Drozdz, M., Kapiszewska, M., Nenko, I., Thune, I. and Ziomkiewicz, A. 2015. Apolipoprotein E (ApoE) polymorphism is related to differences in potential fertility in women: a case of antagonistic pleiotropy? Proceedings of the Royal Society B: Biological Sciences, 282, 20142395.Google Scholar
Jeste, D. V., Lee, E. E. and Cacioppo, S. 2020. Battling the modern behavioral epidemic of loneliness: suggestions for research and interventions. JAMA Psychiatry, 77, 553554.CrossRefGoogle ScholarPubMed
Jones, N. B. 2016. Demography and Evolutionary Ecology of Hadza Hunter-Gatherers. Cambridge: Cambridge University Press.Google Scholar
Kachel, A. F., Premo, L. S. and Hublin, J.-J. 2011. Grandmothering and natural selection. Proceedings of the Royal Society B: Biological Sciences, 278, 384391.Google Scholar
Karran, E., Mercken, M. and Destrooper, B. 2011. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nature Reviews Drug Discovery, 10, 698712.Google Scholar
Kim, J., Stewart, R., Shin, I. and Yoon, J. 2003. Limb length and dementia in an older Korean population. Journal of Neurology, Neurosurgery & Psychiatry, 74, 427432.Google Scholar
Kinney, J. W., Bemiller, S. M., Murtishaw, A. S., Leisgang, A. M., Salazar, A. M. and Lamb, B. T. 2018. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 4, 575590.Google Scholar
Kivipelto, M., Helkala, E. L., Laakso, M. P., Hanninen, T., Hallikainen, M., Alhainen, K., Iivonen, S., Mannermaa, A., Tuomilehto, J. and Nissinen, A. 2002. Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Annals of Internal Medicine, 137, 149155.CrossRefGoogle ScholarPubMed
Klaver, C., Kliffen, M., Van Duijn, C. M., Hofman, A., Cruts, M., Grobbee, D. E., Van Broeckhoven, C. and De Jong, P. 1998. Genetic association of apolipoprotein E with age-related macular degeneration. American Journal of Human Genetics, 63, 200206.Google Scholar
Koochmeshgi, J., Hosseini-Mazinani, S. M., Seifati, S. M., Hosein-Pur-Nobari, N. and Teimoori-Toolabi, L. 2004. Apolipoprotein E genotype and age at menopause. Annals of the New York Academy of Sciences, 1019, 564567.Google Scholar
Lahdenperä, M., Lummaa, V., Helle, S., Tremblay, M. and Russell, A. F. 2004. Fitness benefits of prolonged post-reproductive lifespan in women. Nature, 428, 178181.Google Scholar
Ley, S. H., Li, Y., Tobias, D. K., Manson, J. E., Rosner, B., Hu, F. B. and Rexrode, K. M. 2017. Duration of reproductive life span, age at menarche, and age at menopause are associated with risk of cardiovascular disease in women. Journal of the American Heart Association, 6, e006713.Google Scholar
Li, J., Chen, Y., Wu, H. and Li, L. 2014. Apolipoprotein E (Apo E) gene polymorphisms and recurrent pregnancy loss: a meta-analysis. Journal of Assisted Reproduction and Genetics, 31, 139148.Google Scholar
Mahley, R. W. and Rall, S. C. Jr 2000. Apolipoprotein E: far more than a lipid transport protein. Annual Review of Genomics and Human Genetics, 1, 507537.Google Scholar
Martins, R. N., Clarnette, R., Fisher, C., Broe, G. A., Brooks, W. S., Montgomery, P. and Gandy, S. E. 1995. ApoE genotypes in Australia: roles in early and late onset Alzheimer’s disease and Down’s syndrome. Neuroreport, 6, 15131516.Google Scholar
Medawar, P. B. 1952. An Unsolved Problem of Biology. London: HK Lewis.Google Scholar
Meng, F.-T., Wang, Y.-L., Liu, J., Zhao, J., Liu, R.-Y. and Zhou, J.-N. 2012. ApoE genotypes are associated with age at natural menopause in Chinese females. AGE, 34, 10231032.Google Scholar
Minihane, A., Jofre-Monseny, L., Olano-Martin, E. and Rimbach, G. 2007. ApoE genotype, cardiovascular risk and responsiveness to dietary fat manipulation. Proceedings of the Nutrition Society, 66, 183197.Google Scholar
Mor, G., Nilsen, J., Horvath, T., Bechmann, I., Brown, S., Garcia-Segura, L. M. and Naftolin, F. 1999. Estrogen and microglia: a regulatory system that affects the brain. Journal of Neurobiology, 40, 484496.Google Scholar
Mortazavizadeh, Z., Maercker, A., Roth, T., Savaskan, E. and Forstmeier, S. 2020. Quality of the caregiving relationship and quality of life in mild Alzheimer’s dementia. Psychogeriatrics, 20, 568577.CrossRefGoogle ScholarPubMed
Mutlu, B., Bas, A. Y., Aksoy, N. and Taskin, A. 2012. The effect of maternal number of births on oxidative and antioxidative systems in cord blood. Journal of Maternal–Fetal & Neonatal Medicine, 25, 802805.Google Scholar
Nesse, R. M. and Williams, G. C. 1996. Why We Get Sick: The New Science of Darwinian Medicine. New York: Random House.Google Scholar
Oria, R. B., Patrick, P. D., Zhang, H., Lorntz, B., De Castro Costa, C. M., Brito, G. A. C., Barrett, L. J., Lima, A. A. M. and Guerrant, R. L. 2005. APOE4 protects the cognitive development in children with heavy diarrhea burdens in Northeast Brazil. Pediatric Research, 57, 310316.CrossRefGoogle ScholarPubMed
Papadimitriou, A. 2016. The evolution of the age at menarche from prehistorical to modern times. Journal of Pediatric and Adolescent Gynecology, 29, 527530.CrossRefGoogle ScholarPubMed
Peccei, J. S. 2001. Menopause: adaptation or epiphenomenon? Evolutionary Anthropology, 10, 4357.Google Scholar
Piazza-Gardner, A. K., Gaffud, T. J. and Barry, A. E. 2013. The impact of alcohol on Alzheimer’s disease: a systematic review. Aging & Mental Health, 17, 133146.Google Scholar
Pontzer, H., Raichlen, D. A., Wood, B. M., Mabulla, A. Z., Racette, S. B. and Marlowe, F. W. 2012. Hunter-gatherer energetics and human obesity. PLoS ONE, 7, e40503.CrossRefGoogle ScholarPubMed
Prince, M. J., Acosta, D., Guerra, M., Huang, Y., Jimenez-Velazquez, I. Z., Rodriguez, J. J. L., Salas, A., Sosa, A. L., Chua, K.-C. and Dewey, M. E. 2018. Reproductive period, endogenous estrogen exposure and dementia incidence among women in Latin America and China; a 10/66 population-based cohort study. PLoS ONE, 13, e0192889.Google Scholar
Ptok, U., Barkow, K. and Heun, R. 2002. Fertility and number of children in patients with Alzheimer’s disease. Archives of Women’s Mental Health, 5, 8386.CrossRefGoogle ScholarPubMed
Ravaja, N., Raikkonen, K., Lyytinen, H., Lehtimaki, T. and Keltikangas-Jarvinen, L. 1997. Apolipoprotein E phenotypes and cardiovascular responses to experimentally induced mental stress in adolescent boys. Journal of Behavioral Medicine, 20, 571587.Google Scholar
Reiches, M. W., Ellison, P. T., Lipson, S. F., Sharrock, K. C., Gardiner, E. and Duncan, L. G. 2009. Pooled energy budget and human life history. American Journal of Human Biology, 21, 421429.CrossRefGoogle ScholarPubMed
Rook, G. A. W. 2007. The hygiene hypothesis and the increasing prevalence of chronic inflammatory disorders. Transactions of the Royal Society of Tropical Medicine and Hygiene, 101, 10721074.Google Scholar
Rook, G. A. W. 2012. Hygiene hypothesis and autoimmune diseases. Clinical Reviews in Allergy and Immunology, 42, 515.Google Scholar
Sando, S. B., Melquist, S., Cannon, A., Hutton, M. L., Sletvold, O., Saltvedt, I., White, L. R., Lydersen, S. and Aasly, J. O. 2008. APOE ε4 lowers age at onset and is a high risk factor for Alzheimer’s disease; a case control study from central Norway. BMC Neurology, 8, 9.Google Scholar
Sapolsky, R. M. and Finch, C. E. 2000. Alzheimer’s disease and some speculations about the evolution of its modifiers. Annals of the New York Academy of Sciences, 924, 99103.Google Scholar
Sayi, J., Patel, N., Premukumar, D., Adem, A., Windblad, B., Matuja, W., Mitui, E., Gatere, S., Friedand, R. and Koss, E. 1997. Apolipoprotein E polymorphism in elderly east Africans. East African Medical Journal, 74, 668670.Google Scholar
Sellen, D. W. 2001. Comparison of infant feeding patterns reported for nonindustrial populations with current recommendations. Journal of Nutrition, 131, 27072715.Google Scholar
Shao, H., Breitner, J. C., Whitmer, R. A., Wang, J., Hayden, K., Wengreen, H., Corcoran, C., Tschanz, J., Norton, M. and Munger, R. 2012. Hormone therapy and Alzheimer disease dementia: new findings from the Cache County Study. Neurology, 79, 18461852.Google Scholar
Singh, P., Singh, M. and Mastana, S. 2006. APOE distribution in world populations with new data from India and the UK. Annals of Human Biology, 33, 279308.Google Scholar
Song, Y., Stampfer, M. J. and Liu, S. 2004. Meta-analysis: apolipoprotein E genotypes and risk for coronary heart disease. Annals of Internal Medicine, 141, 137147.Google Scholar
Stearns, S. C. and Koella, J. C. 2008. Evolution in Health and Disease. Oxford: Oxford University Press.Google Scholar
Stuart-Macadam, P. 1995. Biocultural perspectives on breastfeeding. In: Stuart-Macadam, P. and Dettwyler, K. A. (eds.), Breastfeeding: Biocultural Perspectives. Berlin: Walter de Gruyter & Co., pp. 138.Google Scholar
Tao, Q., Ang, T. F. A., Decarli, C., Auerbach, S. H., Devine, S., Stein, T. D., Zhang, X., Massaro, J., Au, R. and Qiu, W. Q. 2018. Association of chronic low-grade inflammation with risk of Alzheimer disease in ApoE4 carriers. JAMA Network Open, 1, e183597.Google Scholar
Thomas, P. A. and Umberson, D. 2017. Do older parents’ relationships with their adult children affect cognitive limitations, and does this differ for mothers and fathers? Journals of Gerontology: Series B, 73, 11331142.Google Scholar
Tsutaya, T., Shimomi, A., Fujisawa, S., Katayama, K. and Yoneda, M. 2016. Isotopic evidence of breastfeeding and weaning practices in a hunter-gatherer population during the Late/Final Jomon period in eastern Japan. Journal of Archaeological Science, 76, 7078.Google Scholar
Tulchinsky, D. and Little, A. B. 1994. Maternal–Fetal Endocrinology. Philadelphia, PA: W.B. Saunders.Google Scholar
Twamley, E. W., Ropacki, S. A. L. and Bondi, M. W. 2006. Neuropsychological and neuroimaging changes in preclinical Alzheimer’s disease. Journal of the International Neuropsychological Society, 12, 707735.Google Scholar
UNICEF 2018. Breastfeeding: A Mother’s Gift, for Every Child. New York: United Nations Children’s Fund.Google Scholar
Van Den Heuvel, C., Thornton, E. and Vink, R. 2007. Traumatic brain injury and Alzheimer’s disease: a review. Progress in Brain Research, 161, 303316.Google Scholar
Waring, S., Rocca, W., Petersen, R., O’Brien, P., Tangalos, E. and Kokmen, E. 1999. Postmenopausal estrogen replacement therapy and risk of AD: a population-based study. Neurology, 52, 965970.Google Scholar
Williams, G. 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398411.Google Scholar
Wilson, R. S., Krueger, K. R., Arnold, S. E., Schneider, J. A., Kelly, J. F., Barnes, L. L., Tang, Y. and Bennett, D. A. 2007. Loneliness and risk of Alzheimer disease. Archives of General Psychiatry, 64, 234240.Google Scholar
Wozniak, M. A., Itzhaki, R. F., Faragher, E. B., James, M. W., Ryder, S. D. and Irving, W. L. 2002. Apolipoprotein E-e4 protects against severe liver disease caused by hepatitis C virus. Hepatology, 36, 456463.Google Scholar
Wozniak, M. A., Riley, E. and Itzhaki, R. 2004. Apolipoprotein E polymorphisms and risk of malaria. Journal of Medical Genetics, 41, 145146.Google Scholar
Wu, Y. C., Lin, Y. C., Yu, H. L., Chen, J. H., Chen, T. F., Sun, Y., Wen, L. L., Yip, P. K., Chu, Y. M. and Chen, Y. C. 2015. Association between air pollutants and dementia risk in the elderly. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 1, 220228.Google Scholar
Zanetti, O., Solerte, S. and Cantoni, F. 2009. Life expectancy in Alzheimer’s disease (AD). Archives of Gerontology and Geriatrics, 49, 237243.Google Scholar
Ziomkiewicz, A., Sancilio, A., Galbarczyk, A., Klimek, M., Jasienska, G. and Bribiescas, R. G. 2016. Evidence for the cost of reproduction in humans: high lifetime reproductive effort is associated with greater oxidative stress in post-menopausal women. PLoS ONE, 11, e0145753.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×