Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-13T12:27:21.310Z Has data issue: false hasContentIssue false

7 - A pragmatic approach for selecting evo-devo model species in amniotes

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

One major classical justification of using a model metazoan species for experimentation has been that discoveries of biological phenomena in that species could be extrapolated to other multicellular species. Because the chances that this extrapolation is valid in humans depend on the phylogenetic distance between humans and the model species, many researchers have somewhat sacrificed the major benefits of small size, short generation time and ease of manipulation that characterise some invertebrates in order to use species that humans can more readily relate to, such as the laboratory mouse (Mus musculus). However, the community of biologists has continued to use additional model species because each of the selected taxa have specific features that make experimental manipulation easier (e.g. easy-to-score morphological variation and giant polytene chromosomes in Drosophila melanogaster, or accurate description of the largely invariant complete cell lineage and full neural connectivity in the roundworm Caenorhabditis elegans).

Ever since the molecular genetic revolution, a constant concern has been the possibility of manipulating the genome of model species. For example, generations of Drosophila scientists have developed and applied ingenious approaches that allow, in principle, screening for any phenotype at any stage of development (reviewed in St Johnston 2002). Even for the mouse model, multiple techniques, such as homologous recombination, tissue-specific activation/inactivation techniques, cloning and RNA interference (RNAi), have been developed for performing genotype- or phenotype-driven experiments. Furthermore, recent access to full genome sequences makes genome engineering of some model species easier.

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 123 - 143
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badwaik, N. K. & Rasweiler, J. J. IV 2001. Altered trophoblastic differentiation and increased trophoblastic invasiveness during delayed development in the short-tailed fruit bat, Carollia perspicillata. Placenta 22, 124–144.CrossRefGoogle ScholarPubMed
Benton, M. J. & Donoghue, P. C. J. 2007. Paleontological evidence to date the tree of life. Molecular Biology and Evolution 24, 26–53.CrossRefGoogle ScholarPubMed
Birkhead, T. R. 1995. Sperm competition: evolutionary causes and consequences. Reproduction, Fertility and Development 7, 755–775.CrossRefGoogle ScholarPubMed
Bleidorn, C., Eeckhaut, I., Podsiadlowski, L., et al. 2007. Mitochondrial genome and nuclear sequnce data support Myzostomida as part of the annelid radiation. Molecular Biology and Evolution 24, 1690–1701.CrossRefGoogle Scholar
Bonneaud, C., Chastel, O., Federici, P., Westerdahl, H. & Sorci, G. 2006. Complex Mhc-based mate choice in a wild passerine. Proceedings of the Royal Society. Biological Sciences 273, 1111–1116.CrossRefGoogle Scholar
Borroni, A., Loy, A. & Capanna, E. 1999. A flexible arrangement for the study of moles in captivity. Acta Theriologica 44, 207–214.CrossRefGoogle Scholar
Bossuyt, F. & Milinkovitch, M. C. 2000. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proceedings of the National Academy of Sciences of the USA 97, 6585–6590.CrossRefGoogle ScholarPubMed
Burk, R. F., Christensen, J. M., Maguire, M. J. 2006. A combined deficiency of vitamins E and C causes severe central nervous system damage in guinea pigs. Journal of Nutrition 136, 1576–1581.CrossRefGoogle Scholar
Burt, D. W. 2005. Chicken genome: current status and future opportunities. Genome Research 15, 1692–1698.CrossRefGoogle ScholarPubMed
Carter, A. M., Blankenship, T. N., Kunzle, H. & Enders, A. C. 2004. Structure of the definitive placenta of the tenrec, Echinops telfairi. Placenta 25, 218–232.CrossRefGoogle ScholarPubMed
Carvalho, R. A., Lins-Lainson, Z. C. & Lainson, R. 1997. Breeding nine-banded armadillos (Dasypus novemcinctus) in captivity. Contemporary Topics in Laboratory Animal Science 36, 66–68.Google Scholar
Cavanagh, R. D., Lambin, X., Ergon, T. 2004. Disease dynamics in cyclic populations of field voles (Microtus agrestis): cowpox virus and vole tuberculosis (Mycobacterium microti). Proceedings of the Royal Society of London, Biological Sciences 271, 859–867.CrossRefGoogle Scholar
Cretekos, C. J., Weatherbee, S. D., Chen, C. H.et al. 2005. Embryonic staging system for the short-tailed fruit bat, Carollia perspicillata, a model organism for the mammalian order Chiroptera, based upon timed pregnancies in captive-bred animals. Developmental Dynamics 233, 721–738.CrossRefGoogle ScholarPubMed
Dengler-Crish, C. M., Crish, S. D., O'Riain, M. J. & Catania, K. C. 2006. Organization of the somatosensory cortex in elephant shrews (E. edwardii). Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology 288, 859–866.CrossRefGoogle Scholar
Dobson, G. 2003. On being the right size: heart design, mitochondrial efficiency and lifespan potential. Clinical and Experimental Pharmacology and Physiology 30, 590–597.CrossRefGoogle ScholarPubMed
Dobson, S. E., Smith, A. T. & Gao, W. X. 1998. Social and ecological influences on dispersal and philopatry in the plateau pika (Ochotona curzoniae). Behavioral Ecology 9, 622–635.CrossRefGoogle Scholar
Drenhaus, U., Rager, G., Eggli, P. & Kretz, R. 2006. On the postnatal development of the striate cortex (V1) in the tree shrew (Tupaia belangeri). European Journal of Neuroscience 24, 479–490.CrossRefGoogle Scholar
Du, W. G. & Ji, X. 2003. The effects of incubation thermal environments on size, locomotor performance and early growth of hatchling soft-shelled turtles, Pelodiscus sinensis. Journal of Thermal Biology 28, 279–286.CrossRefGoogle Scholar
Dusheck, J. 2002. It's the ecology, stupid!Nature 418, 578–579.CrossRefGoogle ScholarPubMed
Fishman, M. C. 2001. Genomics. Zebrafish: the canonical vertebrate. Science 294, 1290–1291.CrossRefGoogle ScholarPubMed
Fondon, J. W. III & Garner, H. R. 2004. Molecular origins of rapid and continuous morphological evolution. Proceedings of the National Academy of Sciences of the USA 101, 18058–18063.CrossRefGoogle ScholarPubMed
Freyer, C., Zeller, U. & Renfree, M. B. 2002. Ultrastructure of the placenta of the tammar wallaby, Macropus eugenii: comparison with the grey short-tailed opossum, Monodelphis domestica. Journal of Anatomy 201, 101–119.CrossRefGoogle ScholarPubMed
Gentner, T. Q., Fenn, K. M., Margoliash, D. & Nusbaum, H. C. 2006. Recursive syntactic pattern learning by songbirds. Nature 440, 1204–1207.CrossRefGoogle ScholarPubMed
Gilbert, S. F. & Bolker, J. A. 2003. Ecological developmental biology: preface to the symposium. Evolution & Development 5, 3–8.CrossRefGoogle ScholarPubMed
Gilbert, S. F., Loredo, G. A., Brukman, A. & Burke, A. C. 2001. Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution. Evolution & Development 3, 47–58.CrossRefGoogle ScholarPubMed
Grenard, S. 1991. Handbook of Alligators and Crocodiles. Malaba: Krieger Publishing Company.Google Scholar
Guillette, L. J. Jr. & Gunderson, M. P. 2001. Alterations in development of reproductive and endocrine systems of wildlife populations exposed to endocrine-disrupting contaminants. Reproduction 122, 857–864.CrossRefGoogle ScholarPubMed
Holland, L. Z., Laudet, V. & Schubert, M. 2004. The chordate amphioxus: an emerging model organism for developmental biology. Cellular and Molecular Life Sciences 61, 2290–2308.CrossRefGoogle ScholarPubMed
Jackson, S. 2003. Australian Mammals: Biology and Captive Management. Collingwood, Australia: CSIRO Publishing.Google Scholar
Johnson, F. & Whitney, O. 2005. Singing-driven gene expression in the developing songbird brain. Physiology and Behavior 86, 390–398.CrossRefGoogle ScholarPubMed
Kiefer, J. C. 2006. Emerging developmental model systems. Developmental Dynamics 235, 2895–2899.CrossRefGoogle ScholarPubMed
Kishino, H., Thorne, J. L. & Bruno, W. J. 2001. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Molecular Biology and Evolution 18, 352–361.CrossRefGoogle Scholar
Kocher, T. D., Conroy, J. A., McKaye, K. R. & Stauffer, J. R. 1993. Similar morphologies of cichlid fish in Lakes Tanganyika and Malawi are due to convergence. Molecular Phylogenetics and Evolution 2, 158–165.CrossRefGoogle ScholarPubMed
Kohler, G. 2005. Incubation of Reptile Eggs: Basics, Guidelines, Experiences. Malaba: Krieger Publishing Company.Google Scholar
Krenz, J. G., Naylor, G. J., Shaffer, H. B. & Janzen, F. J. 2005. Molecular phylogenetics and evolution of turtles. Molecular Phylogenetics and Evolution 37, 178–191.CrossRefGoogle ScholarPubMed
Kress, A., Regli, C., Spornitz, U. M. & Morson, G. 2004. Changes in the epithelium of the vaginal complex during the estrous cycle of the marsupial Monodelphis domestica. 2. Scanning electron microscopy study. Cells Tissues Organs 178, 48–59.CrossRefGoogle ScholarPubMed
Krohmer, R. W. 2004. The male red-sided garter snake (Thamnophis sirtalis parietalis): reproductive pattern and behavior. Ilar Journal 45, 54–74.CrossRefGoogle ScholarPubMed
Kunzle, H. 2006. Thalamo-striatal projections in the hedgehog tenrec. Brain Research 1100, 78–92.CrossRefGoogle ScholarPubMed
Kuraku, S., Usuda, R. & Kuratani, S. 2005. Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evolution & Development 7, 3–17.CrossRefGoogle ScholarPubMed
Lapid, R., Nir, I., Snapir, N. & Robinzon, B. 2004. Reproductive traits in the spur-thighed tortoise (Testudo graeca terrestris): new tools for the enhancement of reproductive success and survivorship. Theriogenology 61, 1147–1162.CrossRefGoogle ScholarPubMed
Losos, J. B., Jackman, T. R., Larson, A., Queiroz, K. & Rodriguez-Schettino, L. 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 2115–2118.CrossRefGoogle ScholarPubMed
Lovern, M. B., Holmes, M. M. & Wade, J. 2004. The green anole (Anolis carolinensis): a reptilian model for laboratory studies of reproductive morphology and behavior. Ilar Journal 45, 54–64.CrossRefGoogle ScholarPubMed
Lovern, M. B. & Passek, K. M. 2002. Sequential alternation of offspring sex from successive eggs by female green anoles, Anolis carolinensis. Canadian Journal of Zoology 80, 77–82.CrossRefGoogle Scholar
Mand, S., Specht, S., Zahner, H. & Hoerauf, A. 2006. Ultrasonography in filaria-infected rodents: detection of adult Litomosoides sigmodontis and Brugia malayi filariae. Tropical Medicine and International Health 11, 1382–1387.CrossRefGoogle ScholarPubMed
Metscher, B. D. & Ahlberg, P. E. 1999. Zebrafish in context: uses of a laboratory model in comparative studies. Developmental Biology 210, 1–14.CrossRefGoogle ScholarPubMed
Milinkovitch, M. C. & Tzika, A. 2007. Escaping the mouse trap: the selection of new Evo-Devo model species. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 308, 337–346.Google Scholar
Mills, A. D., Crawford, L. L., Domjan, M. & Faure, J. M. 1997. The behavior of the Japanese or domestic quail Coturnix japonica. Neuroscience and Biobehavioral Reviews 21, 261–281.CrossRefGoogle ScholarPubMed
Milnes, M. R., Allen, D., Bryan, T. A., Sedacca, C. D. & Guillette, L. J. Jr 2004. Developmental effects of embryonic exposure to toxaphene in the American alligator (Alligator mississippiensis). Comparative Biochemistry and Physiolology. C. Toxicology & Pharmacology 138, 81–87.CrossRefGoogle Scholar
Minelli, A. 2003. The Development of Animal Form: Ontogeny, Morphology, and Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Murphy, W. J., Eizirik, E., Johnson, W. E. 2001a. Molecular phylogenetics and the origins of placental mammals. Nature 409, 614–618.CrossRefGoogle Scholar
Murphy, W. J., Eizirik, E., O'Brien, S. J. 2001b. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294, 2348–2351.CrossRefGoogle Scholar
Mzilikazi, N. & Lovegrove, B. G. 2004. Daily torpor in free-ranging rock elephant shrews, Elephantulus myurus: a year-long study. Physiological and Biochemical Zoology 77, 285–296.CrossRefGoogle ScholarPubMed
Mzilikazi, N. & Lovegrove, B. G. 2006. Noradrenalin induces thermogenesis in a phylogenetically ancient eutherian mammal, the rock elephant shrew, Elephantulus myurus. Journal of Comparative Physiology B 176, 75–84.CrossRefGoogle Scholar
Nagashima, H., Uchida, K. 2005. Turtle–chicken chimera: an experimental approach to understanding evolutionary innovation in the turtle. Developmental Dynamics 232, 149–161.CrossRefGoogle ScholarPubMed
Ohya, Y. K., Kuraku, S. & Kuratani, S. 2005. Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle. Journal of Experimental Zoology Part B (Molecular and Developmental Evolution) 304, 107–118.CrossRefGoogle ScholarPubMed
Ottinger, M. A., Abdelnabi, M., Li, Q.et al. 2004. The Japanese quail: a model for studying reproductive aging of hypothalamic systems. Experimental Gerontology 39, 1679–1693.CrossRefGoogle ScholarPubMed
Poole, T. 1999. The UFAW Handbook on the Care and Management of Laboratory Animals. Oxford: Blackwell Science.Google Scholar
Rathbun, G. B., Beaman, P. & Maliniak, E. 1981. Capture, husbandry and breeding of rufous elephant-shrews (Elephantulus rufescens). International Zoo Yearbook 21, 176–184.CrossRefGoogle Scholar
Regli, C. & Kress, A. 2002. Changes in the epithelium of the vaginal complex during the estrous cycle of the marsupial Monodelphis domestica. 1. Transmission electron microscopy study. Cells Tissues Organs 172, 276–296.CrossRefGoogle ScholarPubMed
Ruber, L., Verheyen, E. & Meyer, A. 1999. Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proceedings of the National Academy of Sciences of the USA 96, 10230–10235.CrossRefGoogle Scholar
Sachser, N. 1998. Of domestic and wild guinea pigs: studies in sociophysiology, domestication, and social evolution. Naturwissenschaften 85, 307–317.CrossRefGoogle ScholarPubMed
Sears, K. E., Behringer, R. R., Rasweiler, J. J. IV & Niswander, L. A. 2006. Development of bat flight: morphologic and molecular evolution of bat wing digits. Proceedings of the National Academy of Science of the USA 103, 6581–6586.CrossRefGoogle ScholarPubMed
Shimozuru, M., Kikusui, T., Takeuchi, Y. & Mori, Y. 2006. Scent-marking and sexual activity may reflect social hierarchy among group-living male Mongolian gerbils (Meriones unguiculatus). Physiology and Behavior 89, 644–649.CrossRefGoogle Scholar
Smith, K. K. 2001. Early development of the neural plate, neural crest and facial region of marsupials. Journal of Anatomy 199, 121–131.CrossRefGoogle ScholarPubMed
Smotherman, M. & Metzner, W. 2005. Auditory-feedback control of temporal call patterns in echolocating horseshoe bats. Journal of Neurophysiology 93, 1295–1303.CrossRefGoogle ScholarPubMed
Springer, M. S., Murphy, W. J., Eizirik, E. & O'Brien, S. J. 2003. Placental mammal diversification and the Cretaceous–Tertiary boundary. Proceedings of the National Academy of Sciences of the USA 100, 1056–1061.CrossRefGoogle ScholarPubMed
St Johnston, D. 2002. The art and design of genetic screens: Drosophila melanogaster. Nature Reviews Genetics 3, 176–188.CrossRefGoogle ScholarPubMed
Stanhope, M. J., Waddell, V. G., Madsen, O. 1998. Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proceedings of the National Academy of Sciences of the USA 95, 9967–9972.CrossRefGoogle ScholarPubMed
Stern, C. D. 2005. The chick; a great model system becomes even greater. Developmental Cell 8, 9–17.Google Scholar
Temple-Smith, P. & Grant, T. 2001. Uncertain breeding: a short history of reproduction in monotremes. Reproduction, Fertility and Development 13, 487–497.CrossRefGoogle Scholar
Thewissen, J. G., Cohn, M. J., Stevens, L. S. 2006. Developmental basis for hind-limb loss in dolphins and origin of the cetacean bodyplan. Proceedings of the National Academy of Sciences of the USA 103, 8414–8418.CrossRefGoogle ScholarPubMed
Tissir, F., Lambert, Rouvroit C., Sire, J. Y., Meyer, G. & Goffinet, A. M. 2003. Reelin expression during embryonic brain development in Crocodylus niloticus. Journal of Comparative Neurology 457, 250–262.CrossRefGoogle ScholarPubMed
Dijk, M. A., Madsen, O., Catzeflis, F.et al. 2001. Protein sequence signatures support the African clade of mammals. Proceedings of the National Academy of Sciences of the USA 98, 188–193.CrossRefGoogle ScholarPubMed
Rheede, T., Bastiaans, T., Boone, D. N. 2006. The platypus is in its place: nuclear genes and indels confirm the sister group relation of monotremes and therians. Molecular Biology and Evolution 23, 587–597.CrossRefGoogle ScholarPubMed
Wagner, G. P. & Larsson, H. C. E. 2003. What is the promise of developmental evolution? III. The crucible of developmental evolution. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 300, 1–4.Google ScholarPubMed
Wang, Z., Dooley, T. P., Curto, E. V., Davis, R. L. & VandeBerg, J. L. 2004. Cross-species application of cDNA microarrays to profile gene expression using UV-induced melanoma in Monodelphis domestica as the model system. Genomics 83, 588–599.CrossRefGoogle ScholarPubMed
Wiens, J. J., Brandley, M. C. & Reeder, T. W. 2006. Why does a trait evolve multiple times within a clade? Repeated evolution of snake-like body form in squamate reptiles. Evolution 60, 123–141.Google Scholar
Wilson, J. D., Shaw, G., Leihy, M. L. & Renfree, M. B. 2002. The marsupial model for male phenotypic development. Trends in Endocrinology and Metabolism 13, 78–83.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×