Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-13T12:39:02.659Z Has data issue: false hasContentIssue false

8 - On comparisons and causes in evolutionary developmental biology

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

Denn mit dem Warum der Dinge kommt niemand zu Ende. Die Ursachen alles Geschehens gleichen den Dünenkulissen am Meere: eine ist immer der anderen vorgelagert, und das Weil, bei dem sich ruhen ließe, liegt im Unendlichen.

[For once you begin with the Why you can never get to the end. It is like the dunes by the sea, where behind each dune lies still another and the Because where you might come to final rest lies somewhere in infinity.]

Thomas Mann, Joseph und seine Brüder

Comparison is fundamental to any evolutionary developmental analysis (e.g. Alberch 1985, Rieppel 1988, Dohle 1989, Minelli 2003, Scholtz 2005, Deutsch 2006, Jenner 2006, Breidbach and Ghiselin 2007). However, evo-devo as a discipline evolved from a mix of experimental and descriptive approaches to development. Accordingly, different weight is put on the method of studying development in an evolutionary framework depending on a researcher's scientific background. Here I want to evaluate the different approaches and their contribution to addressing evolutionary questions. I stress that only the comparative approach offers a direct method of studying development with respect to evolutionary changes. Descriptive and comparative approaches are often interpreted as being less ‘exact’ than experimental studies because they deal with untestable scenarios. Here I want to show that comparative approaches are a direct means to study evolution if the latter is accepted as the general framework for reasoning about causality and changes and the link between the two.

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 144 - 159
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberch, P. 1985. Problems with the interpretation of developmental sequences. Systematic Zoology 34, 46–58.CrossRefGoogle Scholar
Arthur, W. 2000. The concept of developmental reprogramming and the quest for an inclusive theory of evolutionary mechanisms. Evolution & Development 2, 49–57.CrossRefGoogle ScholarPubMed
Breidbach, O. & Ghiselin, M. T. 2007. Evolution and development: Past, present, and future. Theory in Biosciences 125, 157–171.Google ScholarPubMed
Chen, J., Braun, A., Waloszek, D., Peng, Q.-Q. & Maas, A. 2004. Lower Cambrian yolk-pyramid embryos from southern Shaanxi, China. Progress in Natural Science 14, 167–172.CrossRefGoogle Scholar
Cracraft, J. 2005. Phylogeny and evo-devo: characters, phylogeny and historical analysis of the evolution of development. Zoology 108, 345–356.CrossRefGoogle ScholarPubMed
Deutsch, J. S. 2006. Introduction. Development and phylogeny of the arthropods: Darwin's legacy. Development Genes & Evolution 216, 357–362.CrossRefGoogle ScholarPubMed
Dohle, W. 1989. Zur Frage der Homologie ontogenetischer Muster. Zoologische Beiträge (N.F.) 32, 355–389.Google Scholar
Dohle, W. & Scholtz, G. 1988. Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Development 104 (supplement), 147–160.Google Scholar
Donoghue, P. C. J., Bengtson, S., Dong, X.et al. 2006. Synchrotron X-ray tomographic microscopy of fossil embryos. Nature 442, 680–683.CrossRefGoogle ScholarPubMed
Fürst, Lieven A. 2005. The embryonic moult in diplogastrids (Nematoda): homology of developmental stages and heterochrony as a prerequisite for morphological diversity. Zoologischer Anzeiger 244, 79–91.CrossRefGoogle Scholar
Fujioka, M., Jaynes, J. B. & Goto, T. 1995. Early even-skipped stripes act as morphogenetic gradients at the single cell level to establish engrailed expression. Development 121, 4371–4382.Google ScholarPubMed
Galis, F. 1999. Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 285, 19–26.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Hopwood, N. 2007. A history of normal plates, tables and stages in vertebrate embryology. International Journal of Developmental Biology 51, 1–26.CrossRefGoogle ScholarPubMed
Jenner, R. A. 2006. Unburdening evo-devo: ancestral attractions, model organisms, and basal baloney. Development Genes & Evolution 216, 385–394.CrossRefGoogle ScholarPubMed
Jonas, H. 1997. Das Prinzip Leben – Ansätze zu einer philosophischen Biologie. Frankfurt am Main: Suhrkamp.Google Scholar
Lahl, V., Halama, C. & Schierenberg, E. 2003. Comparative and experimental embryogenesis of Plectidae (Nematoda). Development Genes & Evolution 213, 18–27.Google Scholar
Liu, P. Z. & Kaufman, T. C. 2005. Even-skipped is not a pair-rule gene but has segmental and gap-like functions in Oncopeltus fasciatus, an intermediate germband insect. Development 132, 2081–2092.CrossRefGoogle Scholar
Mahner, M. & Bunge, M. 1997. Foundations of Biophilosophy. Berlin: Springer.CrossRefGoogle Scholar
Mayr, E. 1997. This is Biology. Cambridge, MA: Harvard University Press.Google Scholar
Minelli, A. 2003. The Development of Animal Form. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Minelli, A., Brena, C., Deflorian, G., Maruzzo, D. & Fusco, G. 2006. From embryo to adult: beyond the conventional periodization of arthropod development. Development, Genes & Evolution 216, 373–383.CrossRefGoogle ScholarPubMed
Mitchell, S. D. 2006. Essay Review: Modularity – more than a buzzword?Biological Theory 1, 98–101.CrossRefGoogle Scholar
Mocek, R. 1998. Die werdende Form. Marburg: Basilisken-Presse.Google Scholar
Müller, W. A. 1996. From the Aristotelian soul to genetic and epigenetic information: the evolution of the modern concepts in developmental biology at the turn of the century. International Journal of Developmental Biology 40, 21–26.Google ScholarPubMed
Nüsslein-Volhard, C. & Wieschaus, E. 1980. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801.CrossRefGoogle ScholarPubMed
Patel, N. H., Ball, E. E. & Goodman, C. S. 1992. Changing role of even-skipped during the evolution of insect pattern formation. Nature 357, 339–342.CrossRefGoogle ScholarPubMed
Raff, R. A. 1999. Larval homologies and radical evolutionary changes in early development. In Bock, G. R. & Cardew, C. (eds.) Homology (Novartis Foundation Symposium 222). Chichester: Wiley, pp. 110–121.CrossRefGoogle Scholar
Remane, A. 1952. Die Grundlagen des natürlichen Systems, der vergleichenden Anatomie und der Phylogenetik. Leipzig: Geest und Portig.Google Scholar
Richardson, M. K., Jeffery, J. E., Coates, M. I. & Bininda-Emonds, O. R. P. 2001. Comparative methods in developmental biology. Zoology 104, 278–283.CrossRefGoogle ScholarPubMed
Richter, S. 2005. Homologies in phylogenetic analyses – concepts and tests. Theory in Biosciences 124, 105–120.Google Scholar
Rieppel, O. C. 1985. Muster und Prozeß: Komplementarität im biologischen Denken. Naturwissenschaften 72, 337–342.CrossRefGoogle Scholar
Rieppel, O. C. 1988. Fundamentals of Comparative Biology. Basel: Birkhäuser.Google Scholar
Roux, W. 1894. Einleitung. Archiv für Entwicklungsmechanik 1, 1–42.CrossRefGoogle Scholar
Roux, W. 1907. Über die Verschiedenheit der Leistungen der deskriptiven und der experimentellen Forschungsmethode. Archiv für Entwicklungsmechanik 23, 344–356.CrossRefGoogle Scholar
Sander, K. 1996. On the causation of animal morphogenesis: concepts of German-speaking authors from Theodor Schwann (1839) to Richard Goldschmidt (1927). International Journal of Developmental Biology 40, 7–20.Google Scholar
Schlosser, G. & Wagner, G. P. (eds) 2003. Modularity in Development and Evolution. Chicago: University of Chicago Press.Google Scholar
Scholtz, G. 2004. Baupläne versus ground patterns, phyla versus monophyla: aspects of patterns and processes in evolutionary developmental biology. In Scholtz, G. (ed.) Evolutionary Developmental Biology of Crustacea. Crustacean Issues 15. Lisse: A.A. Balkema, pp. 3–16.Google Scholar
Scholtz, G. 2005. Homology and ontogeny: pattern and process in comparative developmental biology. Theory in Biosciences 124, 121–143.CrossRefGoogle ScholarPubMed
Scholtz, G. & Dohle, W. 1996. Cell lineage and cell fate in crustacean embryos: a comparative approach. International Journal of Developmental Biology 40, 211–220.Google ScholarPubMed
Schopenhauer, A. 1847. Ueber die vierfache Wurzel des Satzes vom zureichenden Grunde, 2. Auflage.Frankfurt a. M.: J. Chr. Hermann.Google Scholar
Sewertzoff, A. N. 1931. Morphologische Gesetzmäßigkeiten der Evolution. Jena: Fischer.Google Scholar
Sudhaus, W. 2007. Die Notwendigkeit morphologischer Analysen zur Rekonstruktion der Stammesgeschichte. Species, Phylogeny and Evolution 1, 17–32.Google Scholar
Wagner, G. P. 1996. Homologues, natural kinds and the evolution of modularity. American Zoologist 36, 36–43.CrossRefGoogle Scholar
Wiegner, O. & Schierenberg, E. 1999. Regulative development in a nematode embryo: a hierarchy of cell fate transformations. Developmental Biology 215, 1–12.CrossRefGoogle Scholar
Wuketits, F. M. 1981. Biologie und Kausalität: Biologische Ansätze zur Kausalität, Determination und Freiheit. Berlin: Paul Parey.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×