Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-07T20:30:01.941Z Has data issue: false hasContentIssue false

6 - Rheological and microrheological measurements of soft condensed matter

Published online by Cambridge University Press:  05 July 2014

John R. de Bruyn
Affiliation:
The University of Western Ontario
Felix K. Oppong
Affiliation:
The University of Western Ontario
Jeffrey Olafsen
Affiliation:
Baylor University, Texas
Get access

Summary

Introduction

Fluids deform irreversibly under shear; in other words, they flow. In contrast, solids deform elastically when subjected to a small shearing force and recover their original shape when the force is removed. The behavior of what is termed soft matter is somewhere in between. Soft matter systems are typically viscoelastic, that is they display a combination of viscous (fluid-like) and elastic (solid-like) behavior. Measuring the flow behavior and the mechanical response to deformation of viscoelastic materials provides us with information that can be interpreted in terms of their small-scale structure and dynamics.

The mechanical properties of soft materials depend on the length scale probed by the measurements due to the fact that the materials are structured on length scales intermediate between the atomic and bulk scales [1]. For example, a colloidal suspension has structure on the scale of the spacing between the colloidal particles; a concentrated polymer system, on the scale of the entanglements between large molecules. As a result, their bulk properties can be quite different from properties on length scales smaller than or comparable to the structural scale. Making measurements on both macroscopic and microscopic length scales can help us to develop a better understanding of the relationship between microstructure and bulk properties in soft materials.

Following a brief introduction to viscoelasticity, this chapter will focus on two methods of measuring the viscoelastic properties of soft matter. On the macroscopic scale, rotational shear rheometry provides a well-established set of techniques for determining the mechanical properties of complex fluids.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] R. G., Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).Google Scholar
[2] C. W., Macosko, Rheology: Principles, Measurments, and Applications (Wiley-VCH, New York, 1994).Google Scholar
[3] F. A., Morrison, Understanding Rheology (Oxford University Press, New York, 2001).Google Scholar
[4] R. W., Whorlow, Rheological Techniques (Ellis Horwood, New York, 1992).Google Scholar
[5] F. C., MacKintosh and C. F., Schmidt, “Microrheology,Curr. Opin. Coll. Interf. Sci. 4, 300 (1999).Google Scholar
[6] M. L., Gardel, M. T., Valentine, and D. A., Weitz, “Microrheology,” in K., Breuer (ed.), Microscale Diagnostic Techniques (Springer, New York, 2005).Google Scholar
[7] T. A., Waigh, “Microrheology of complex fluids,Rep. Prog. Phys. 68, 685 (2005).Google Scholar
[8] N., Willenbacher and C., Oelschlaeger, “Dynamics and structure of complex fluids from high frequency mechanical and optical rheometry,Curr. Opin. Colloid Interface Sci. 12, 43 (2007).Google Scholar
[9] C., Pipe and G. H., McKinley, “Microfluidic rheometry,Mech. Res. Comm. 36, 110 (2009).Google Scholar
[10] T. G., Mason and D. A., Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,Phys. Rev. Lett. 74, 1250 (1995).Google Scholar
[11] M. T., Valentine, P. D., Kaplan, D., Thota, J. C., Crocker, T., Gisler, R. K., Prud'homme, M., Beck, and D. A., Weitz, “Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking,Phys. Rev. E 64, 061506 (2001).Google Scholar
[12] R., Bird, R., Armstrong, and O., Hassager, Dynamics of Polymeric Liquids, Volume 1: FluidMechanics (Wiley, New York, 1987).Google Scholar
[13] F. K., Oppong, P., Coussot, and J. R., de Bruyn, “Gelation on the microscopic scale,Phys. Rev. E 78, 021405 (2008).Google Scholar
[14] M., Wilhelm, “Fourier transform rheology,Macromol. Mater. Eng. 287, 83 (2002).Google Scholar
[15] R. H., Ewoldt, A. E., Hosoi, and G. H., McKinley, “New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear,J. Rheol. 52, 1427 (2008).Google Scholar
[16] J. C., Maxwell, “On the dynamical theory of gases,Phil. Trans. 157, 49 (1867).Google Scholar
[17] D. V., Boger and K., Walters, Rheological Phenomena in Focus (Elsevier, Amsterdam, 1993).Google Scholar
[18] P., Coussot, A. I., Leonov, and J.-M., Piau, “Rheology of concentrated dispersed systems in a low molecular weight matrix,J. Non-Newtonian Fuid Mech. 46, 179 (1993).Google Scholar
[19] F., Pignon, A., Magnin, and J.-M., Piau, “Thixotropic colloidal suspensions and flow curves with minimum: identification of flow regimes and rheometric consequences,J. Rheol. 40, 573 (1996).Google Scholar
[20] P. M., Chaikin and T. C., Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995).Google Scholar
[21] D. J., Ferry, Viscoelastic Properties of Polymers, 3rd edn (Wiley, New York, 1980).Google Scholar
[22] R. G., Larson, “Instabilities in viscoelastic flows,Rheol. Acta 31, 213 (1992).Google Scholar
[23] P. C. F., Møller, S., Rodts, M. A. J., Michels, and D., Bonn, “Shear banding and yield stress in soft glassy materials,Phys. Rev. E 77, 041507 (2008).Google Scholar
[24] H., Tabuteau, J. R., de Bruyn, and P., Coussot, “Drag force on a sphere in steady motion through a yield-stress fluid,J. Rheol. 51, 125 (2007).Google Scholar
[25] A., Yoshimura and R. K., Prud'homme, “Wall slip corrections for Couette and parallel disk viscometers,J. Rheol. 32, 53 (1988).Google Scholar
[26] F. K., Oppong and J. R., de Bruyn, unpublished.
[27] Noveon technical data sheet 216 (2002); www.pharma.noveon.com/literature/tds/tds216.pdf
[28] H. A., Barnes and K., Walters, “The yield stress myth?Rheol. Acta 24, 323 (1985).Google Scholar
[29] G., Astarita, “The engineering reality of the yield stress,J. Rheol. 34, 275 (1990).Google Scholar
[30] P. C. F., Moller, A., Fall, and D., Bonn, “No steady state flows below the yield stress: a true yield stress at last?,” arXiv:0904.1467v1 (2009); to be published.
[31] P., Sollich, F., Lequeux, P., Hebraud, and M. E., Cates, “Rheology of soft glassy materials,Phys. Rev. Lett. 78, 2020 (1997).Google Scholar
[32] F. K., Oppong, L., Rubatat, B. J., Frisken, A. E., Bailey, and J. R., de Bruyn, “Microrheology and structure of a yield-stress polymer gel,Phys. Rev. E 73, 041405 (2006).Google Scholar
[33] F. K., Oppong, Ph.D. thesis, University of Western Ontario (2009).
[34] M., Doi and S. F., Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1986).Google Scholar
[35] T. G., Mason, “Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation,Rheol. Acta, 39, 371 (2000).Google Scholar
[36] T. G., Mason, K., Ganesan, J. H., Van Zanten, D., Wirtz, and S. C., Kuo, “Particle tracking microrheology of complex fluids,Phys. Rev. Lett. 79, 3282 (1997).Google Scholar
[37] J., Apgar, Y., Tseng, E., Federov, M. B., Herwig, S. C., Almo, and D., Wirtz, “Multiple-particle tracking measurements of heterogeneities in solutions of actin filaments and actin bundles,Biophys. J. 79, 1095 (2000).Google Scholar
[38] Y., Tseng and D., Wirtz, “Mechanics and multiple-particle tracking microheterogeneity of a-actinin-cross-linked actin filament networks,Biophys. J. 81, 1643 (2001).Google Scholar
[39] I. Y., Wong, M. L., Gardel, D. R., Reichman, E. R., Weeks, M. T., Valentine, A. R., Bausch, and D. A., Weitz, “Anomalous diffusion probes microstructure dynamics of entangled f-actin networks,Phys. Rev. Lett. 92, 178101 (2004).Google Scholar
[40] F. K., Oppong and J. R., de Bruyn, “Diffusion of microscopic tracer particles in a yield-stress fluid,J. Non-Newtonian Fluid Mech. 142, 104 (2007).Google Scholar
[41] J. C., Crocker, M. T., Valentine, E. R., Weeks, T., Gisler, P. D., Kaplan, A. G., Yodh, and D. A., Weitz, “Two-point microrheology of inhomogenous soft materials,Phys. Rev. Lett. 85, 888 (2000).Google Scholar
[42] B., Schnurr, F., Gittes, F. C., MacKintosh, and C. F., Schmidt, “Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations,Macromol. 30, 7781 (1997).Google Scholar
[43] F., Gittes, B., Schnurr, P. D., Olmstead, F. C., MacKintosh, and C. F., Schmidt, “Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations,Phys. Rev. Lett. 79, 3286 (1997).Google Scholar
[44] J. L., Harden and V., Viasnoff, “Recent advances in DWS-based micro-rheology,Curr. Opin. Colloid Interface Sci. 6, 438 (2001).Google Scholar
[45] B. R., Dasgupta, S.-Y., Tee, J. C., Crocker, B. J., Frisken, and D. A., Weitz, “Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering,Phys. Rev. E, 65, 051505 (2002).Google Scholar
[46] M. T., Valentine, L. E., Dewalt, and H.D., Ou-Yang, “Forces on a colloidal particle in a polymer solution: a study using optical tweezers,J. Phys. Condens. Matter 8, 9477 (1996).Google Scholar
[47] E. M., Furst, “Applications of laser tweezers in complex fluid rheology,Curr. Opin. Colloid Interface Sci. 6, 438 (2005).Google Scholar
[48] T. R., Strick, M. N., Dessinges, G., Charvin, N. H., Dekker, J. F., Allemand, D., Bensimon, and V., Croquette, “Stretching of macromolecules and proteins,Rep. Prog. Phys. 66, 1 (2003).Google Scholar
[49] R. E., Mahaffy, C. K., Shih, F. C., MacKintosh, and J., Kas, “Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells,” Phys. Rev. Lett. 85, 880 (2000).Google Scholar
[50] N., Yang, K. K.-H., Wong, J. R., de Bruyn, and J. L., Hutter, “Frequency-dependent viscoelasticity measurement by atomic force microscopy,Meas. Sci. Technol. 20, 025703 (2009).Google Scholar
[51] T., Zemb and P., Lidner (eds.), Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter (Elsevier, Amsterdam, 2002).
[52] A., Mukhopadhyay and S., Granick, Curr. Opin. Colloid Interface Sci. 6 423 (2001).
[53] A., Einstein, Annalen der Physik 17, 549 (1905).
[54] G. D. J., Phillies, Elementary Lectures in Statistical Mechanics (Springer, New York, 2000).Google Scholar
[55] E. R., Weeks and D. A., Weitz, “Subdiffusion and the cage effect studied near the colloidal glass transition,Chem. Phys., 284, 361 (2002).Google Scholar
[56] E. R., Weeks and D. A., Weitz, “Properties of cage rearrangements observed near the colloidal glass transition,Phys. Rev. Lett. 89, 095704 (2002).Google Scholar
[57] A. M., Reynolds, Phys. Lett. A 342, 439 (2005).
[58] A. J., Levine and T. C., Lubensky, “One- and two-particle microrheology,Phys. Rev. Lett. 85, 1774 (2000).Google Scholar
[59] A. J., Levine and T. C., Lubensky, “Response function of a sphere in a viscoelastic two-fluid medium,Phys. Rev. E 63, 041510 (2001).Google Scholar
[60] T. H., Larsen and E. M., Furst, “Microrheology of the liquid-solid transition during gelation,Phys. Rev. Lett. 100, 146001 (2008).Google Scholar
[61] M. T., Valentine, Z. E., Perlman, M. L., Gardel, J. H., Shin, P., Matsudaira, T. J., Mitchison, and D. A., Weitz, “Colloid surface chemistry critically affects multiple particle tracking measurements of biomaterials,Biophys. J. 84, 4004 (2004).Google Scholar
[62] M., Keller, J., Schilling, and E., Sackmann, Rev. Sci. Instrum. 72, 3626 (2001).
[63] J. C., Crocker and D. G., Grier, J. Coll. Interf. Sci. 179, 298 (1996).
[64] E., Weeks and J. C., Crocker, “Particle tracking using IDL,” http://www.physics.emory.edu/~weeks/idl/
[65] M., Kilfoil, http://www.physics.mcgill.ca/~kilfoil/downloads.html; D., Blair and E., Dufresne, http://physics.georgetown.edu/matlab/.
[66] D. S., Martin, M. B., Forstner, and J. A., Käs, “Apparent subdiffusion inherent to single particle tracking,Biophys. J. 83, 2109 (2002).Google Scholar
[67] Southern Clay Products, Inc., Gonzales, Texas; http://www.laponite.com
[68] J., Liu, M. L., Gardel, K., Kroy, E., Frey, B. D., Hoffman, J. C., Crocker, A. R., Bausch, and D. A., Weitz, “Microrheology probes length scale dependent rheology,Phys. Rev. Lett. 96, 118104 (2006).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×