Published online by Cambridge University Press: 05 July 2014
Introduction
Fluids deform irreversibly under shear; in other words, they flow. In contrast, solids deform elastically when subjected to a small shearing force and recover their original shape when the force is removed. The behavior of what is termed soft matter is somewhere in between. Soft matter systems are typically viscoelastic, that is they display a combination of viscous (fluid-like) and elastic (solid-like) behavior. Measuring the flow behavior and the mechanical response to deformation of viscoelastic materials provides us with information that can be interpreted in terms of their small-scale structure and dynamics.
The mechanical properties of soft materials depend on the length scale probed by the measurements due to the fact that the materials are structured on length scales intermediate between the atomic and bulk scales [1]. For example, a colloidal suspension has structure on the scale of the spacing between the colloidal particles; a concentrated polymer system, on the scale of the entanglements between large molecules. As a result, their bulk properties can be quite different from properties on length scales smaller than or comparable to the structural scale. Making measurements on both macroscopic and microscopic length scales can help us to develop a better understanding of the relationship between microstructure and bulk properties in soft materials.
Following a brief introduction to viscoelasticity, this chapter will focus on two methods of measuring the viscoelastic properties of soft matter. On the macroscopic scale, rotational shear rheometry provides a well-established set of techniques for determining the mechanical properties of complex fluids.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.