Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T06:26:03.435Z Has data issue: false hasContentIssue false

2 - Natural history of the fungal hypha: how Woronin bodies support a multicellular lifestyle

from I - Imaging and modelling of fungi in the environment

Published online by Cambridge University Press:  03 November 2009

Gregory Jedd
Affiliation:
Temasek Life Sciences Laboratory, National University of Singapore
Geoffrey Gadd
Affiliation:
University of Dundee
Sarah C. Watkinson
Affiliation:
University of Oxford
Paul S. Dyer
Affiliation:
University of Nottingham
Get access

Summary

Introduction

Fungal evolution and cell biology

Fungi are one of three major clades of eukaryotic life that independently evolved multicellular organization. They have radiated into a large variety of terrestrial and aquatic niches, employing strategies ranging from symbiotic to saprobic to pathogenic, and are remarkable for their developmental diversity and ecological ubiquity, with the number of species estimated to exceed one million (Hawksworth et al., 1995).

The fungi are highly varied in their mode of growth, ranging from unicellular yeasts to multicellular hyphal forms that produce complex fruiting bodies (Hawksworth et al., 1995). Hyphae grow through polarized tip-extension of a tubular cell (hypha), which can be partitioned by the formation of cross-walls called septa. Phylogenetic analysis reveals four major groups of fungi: the early-diverging Chytridiomycota and Zygomycota, and the Ascomycota and Basidiomycota (Fig. 2.1) (Berbee & Taylor, 2001; Lutzoni et al., 2004), which are sister clades that evolved more recently and contain the majority of fungal species (Bruns et al., 1992; Hawksworth et al., 1995). Hyphae are the predominant mode of vegetative cellular organization in the fungi and groups of fungi can be defined based on consistent differences in hyphal structure. The Zygomycota and Chytridiomycota can produce septa but these are infrequent in vegetative hyphae. In contrast, vegetative hyphae in the Ascomycota produce perforate septa at regular intervals and this is also found in the Basidiomycota, suggesting that this trait was present in their common ancestor (Fig. 2.1) (Berbee & Taylor, 2001).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexopolous, C. J., Mims, C. W. & Blackwell, M. (1996). Introductory Mycology. New York: John Wiley & Sons.Google Scholar
Asiegbu, F. O., Choi, W., Jeong, J. S. & Dean, R. A. (2004). Cloning, sequencing and functional analysis of Magnaporthe grisea MVP1 gene, a hex-1 homolog encoding a putative ‘woronin body’ protein. FEMS Microbiology Letters 230, 85–90.CrossRefGoogle ScholarPubMed
Bartnicki-Garcia, S., Bracker, C. E., Gierz, G., Lopez-Franco, R. & Lu, H. (2000). Mapping the growth of fungal hyphae: orthogonal cell wall expansion during tip growth and role of turgor. Biophysical Journal 79, 2382–90.CrossRefGoogle ScholarPubMed
Bauer, R., & Oberwinkler, F. (1994). Meiosis, septal pore architecture, and systematic position of the heterobasidiomycetous fern parasite Herpobasidium filicinum. Canadian Journal of Botany 72, 1229–42.CrossRefGoogle Scholar
Berbee, M. L. & Taylor, J. W. (2001). Fungal molecular evolution: Gene trees and geological time. In The Mycota, vol. VII Part B, Systematics and Evolution, ed. McLaughlin, D. J., McLaughlin, E. G. & Lemke, P. A., pp. 229–45. Berlin: Springer-Verlag.Google Scholar
Berns, M. W., Aist, J. R., Wright, W. H. & Liang, H. (1992). Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser. Experimental Cell Research 198, 375–8.CrossRefGoogle ScholarPubMed
Bracker, C. E. (1967). Ultrastructure of fungi. Annual Review of Phytopathology 5, 343–74.CrossRefGoogle Scholar
Brenner, D. M. & Carrol, G. C. (1968). Fine structural correlates of growth in hyphae of Ascodesmis sphaerospora. Journal of Bacteriology 95, 658–71.Google ScholarPubMed
Bruns, T. D., Vilgalys, S., Barns, D., Gonzalez, D. S., Hibbett, D. J., Lane, L., Simon, S., Stickel, T. M., Szaro, W. G., Weisburg, W. G. & Sogin, M. L. (1992). Evolutionary relationships within the fungi:analyses of nuclear small subunit RNA sequences. Molecular Phylogenetics and Evolution 1, 231–241.CrossRefGoogle Scholar
Buller, A. H. R. (1933a). The translocation of protoplasm through septate mycelium of certain Pyrenomycetes, Discomycetes and Hymenomycetes. In Researches on Fungi, vol. V, pp. 75–167. London: Longmans, Green and Co.Google Scholar
Buller, A. H. R. (1933b). Woronin bodies and their movements. In Researches on Fungi, vol. V, p. 127. London: Longmans, Green and Co.Google Scholar
Buller, A. H. R. (1933c). Woronin bodies and their movements. In Researches on Fungi, vol. V, p. 128. London: Longmans, Green and Co.Google Scholar
Buller, A. H. R. (1933d). Pore plugs and their formation under experimental conditions. In Researches on Fungi, vol. V, pp. 130–3. London: Longmans, Green and Co.Google Scholar
Camp, R. R. (1977). Association of microbodies, Woronin bodies, and septa in intercellular hyphae of Cymadothea trifolii. Canadian Journal of Botany 55, 1856–9.CrossRefGoogle Scholar
Collinge, A. J. & Markham, P. (1982). Hyphal tip ultrastructure of Aspergillus nidulans and Aspergillus giganteus and possible implications of Woronin bodies close to the hyphal apex of the latter species. Protoplasma 113, 209–13.CrossRefGoogle Scholar
Collinge, A. J. & Markham, P. (1985). Woronin bodies rapidly plug septal pores of severed Penicillium chrysogenum hyphae. Experimental Mycology 9, 80–5.CrossRefGoogle Scholar
Curach, N. C., Te'o, V. S., Gibbs, M. D., Bergquist, P. L. & Nevalainen, K. M. (2004). Isolation, characterization and expression of the hex1 gene from Trichoderma reesei. Gene 331, 133–40.CrossRefGoogle ScholarPubMed
Fisher, M., Cox, J., Davis, D. J., Wanger, A., Taylor, R., Huerta, A. J. & Money, N. P. (2004). New information on the mechanism of forcible ascospore discharge from Ascobolus immersus. Fungal Genetics and Biology 41, 698–707.CrossRefGoogle Scholar
Glass, N. L., Rasmussen, C., Roca, G. & Read, N. D. (2004). Hyphal homing, hyphal fusion and mycelial interconnectedness. Trends in Microbiology 12, 135–41.CrossRefGoogle ScholarPubMed
Hawksworth, D. L., Kirk, P. M., Sutton, B. C. & Pegler, D. N. (1995). Ainsworth and Bisby's Dictionary of the Fungi. Wallingford, UK: CAB International Publishing.Google Scholar
Hoch, H. C. & Maxwell, D. P. (1974). Proteinaceous hexagonal inclusion in hyphae of Whetzelinia sclerotiorum and Neurospora crassa. Canadian Journal of Microbiology 20, 1029–36.CrossRefGoogle ScholarPubMed
Jedd, G. & Chua, N. H. (2000). A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nature Cell Biology 2, 226–31.CrossRefGoogle ScholarPubMed
Kimbrough, J. W. (1994). Septal ultrastructure and ascomycete systematics. In Ascomycete Systematics: Problems and Perspectives in the Nineties, ed. Hawksworth, D. L., pp. 127–41. New York: Plenum Press.CrossRefGoogle Scholar
Kyrpides, N. C. & Woese, C. R. (1998). Universally conserved translation initiation factors. Proceedings of the National Academy of Sciences of the USA 95, 224–8.CrossRefGoogle ScholarPubMed
Landvik, S., Schumacher, T. K., Eriksson, O. E. & Moss, S. T. (2003). Morphology and ultrastructure of Neolecta species. Mycological Research 107, 1021–31.CrossRefGoogle ScholarPubMed
Lim, D. B., Hains, P., Walsh, B., Bergquist, P. & Nevalainen, H. (2001). Proteins associated with the cell envelope of Trichoderma reesei: a proteomic approach. Proteomics 1, 899–909.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Lutzoni, F., Kauff, F., Cox, J. C., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M., Hibbett, D., James, T. Y., Baloch, E., Grube, M., Reeb, V., Hofstetter, V., Shcoch, C., Arnold, A. E., Miadlikowska, J., Spatafora, J., Johnson, D., Hambleton, S., Crockett, M., Shoemaker, R., Sung, G.-H., Lücking, R., Lumbsch, T., O'Donnell, K., Binder, M., Diederich, P., Ertz, D., Gueidan, C., Hansen, K., Harris, R. C., Hosaka, K., Lim, Y.-W., Matheny, B., Nishida, H., Pfister, D., Rogers, J., Rossman, A., Schmitt, I., Sipman, H., Stone, J., Sugiyama, J., Yahr, R. & Vilgalys, R. (2004). Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91, 1446–80.CrossRefGoogle ScholarPubMed
Markham, P. & Collinge, A. J. (1987). Woronin bodies of filamentous fungi. FEMS Microbiology Reviews 46, 1–11.CrossRefGoogle Scholar
McClure, W. K., Park, D. & Robinson, P. M. (1968). Apical organization in the somatic hyphae of fungi. Journal of General Microbiology 50, 177–82.CrossRefGoogle ScholarPubMed
McKeen, W. E. (1971). Woronin bodies in Erysiphe graminis DC. Canadian Journal of Microbiology 17, 1557–63.CrossRefGoogle ScholarPubMed
McLaughlin, D. J., Frieders, E. M. & Lu, H. (1995). A microscopist's view of heterobasidiomycete phylogeny. Studies in Mycology 38, 91–109.Google Scholar
Momany, M., Richardson, E. A., Sickle, C. & Jedd, G. (2002). Mapping Woronin body position in Aspergillus nidulans. Mycologia 94, 260–6.CrossRefGoogle ScholarPubMed
Money, N. P. (1998). More g's than the space shuttle: ballistospore discharge. Mycologia 90, 547–58.CrossRefGoogle Scholar
Money, N. P. & Harold, F. M. (1992). Extension growth of the water mold Achlya: interplay of turgor and wall strength. Proceedings of the National Academy of Sciences of the USA 15, 4245–59.CrossRefGoogle Scholar
Moore, R. T. (1975). Early ontogenic stages in dolipore/parenthosome formation in Polyporus biennis. Journal of General Microbiology 87, 251–9.CrossRefGoogle Scholar
Moore, R. T. & Marchant, R. (1972). Ultrastructural characterization of the basidiomycete septum of Polyporus biennis. Canadian Journal of Botany 50, 2463–9.CrossRefGoogle Scholar
Muller, W. H., Montijn, R. C., Humbel, B. M., Aelst, A. C., Boon, E. J. M. C., Krift, T. P. & Boekhout, T. (1998). Structural differences between two types of basidiomycete septal pore caps. Microbiology 144, 1721–30.CrossRefGoogle ScholarPubMed
Oberwinkler, F. & Bauer, R. (1989). The systematics of gasteroid, auricularoid Heterobasidiomycetes. Sydowia 41, 224–56.Google Scholar
Oberwinkler, F. & Bauer, R. (1990). Cryptomycocolax: a new mycoparasitic heterobasidiomycete. Mycologia 82, 671–92.CrossRefGoogle Scholar
Ohno, S. (1970). Evolution by Gene Duplication. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Rosorius, O., Reichart, B., Kratzer, F., Heger, P., Dabauvalle, M. C. & Hauber, J. (1999). Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM. Journal of Cell Science 112, 2369–80.Google Scholar
Soundararajan, S., Jedd, G., Li, X., Ramos-Pamplona, M., Chua, N. H. & Naqvi, N. I. (2004). Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 16, 1564–74.CrossRefGoogle ScholarPubMed
Swann, E. C., Frieders, E. M. & McLaughlin, D. J. (2001). Urediniomycetes. In: The Mycota, vol. VII Part B, Systematics and Evolution, ed. McLaughlin, D. J., McLaughlin, E. G. & Lemke, P. A., pp. 37–56. Berlin: Springer-Verlag.Google Scholar
Tenney, K., Hunt, I., Sweigard, J., Pounder, J. I., McClain, C., Bowman, E. J. & Bowman, B. J. (2000). hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genetics and Biology 31, 205–17.CrossRefGoogle ScholarPubMed
Ternetz, C. (1900). Protoplasmabewegung und Fruchtkörperbildung bei Ascophanus carneus. Jahrbuch für wissenschaftliche Botanik 35, 273–312.Google Scholar
Tey, W. K., North, A. J., Reyes, J. L., Lu, Y. F. & Jedd, G. (2005). Polarized gene expression determines Woronin body formation at the leading edge of the fungal colony. Molecular Biology of the Cell 16, 2651–9.CrossRefGoogle Scholar
Trinci, A. P. J. & Collinge, A. J. (1973). Occlusion of septal pores of damaged hyphae of Neurospora crassa by hexagonal crystals. Protoplasma 80, 57–67.CrossRefGoogle Scholar
Webster, J., Proctor, M. C. F., Davey, R. A. & Duller, G. A. (1988). Measurement of the electrical charge on some basidiospores and an assessment of two possible mechanisms of ballistospore propulsion. Transactions of the British Mycological Society 91, 193–203.CrossRefGoogle Scholar
Wergin, W. P. (1973). Development of Woronin bodies from microbodies in Fusarium oxysporum f.sp. lycopersici. Protoplasma 76, 249–60.CrossRefGoogle ScholarPubMed
Yuan, P., Jedd, G., Kumaran, D., Swaminathan, S., Shio, H., Hewitt, D., Chua, N. H. & Swaminathan, K. (2003). A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa. Nature Structural Biology 10, 264–70.CrossRefGoogle ScholarPubMed
Zuk, D. & Jacobson, D. (1998). A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO Journal 17, 2914–25.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×