Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-21T16:43:00.507Z Has data issue: false hasContentIssue false

12 - Ocean Circulation: Knowns and Unknowns

from Part III - Future Earth and the Earth’s Fluid Environment

Published online by Cambridge University Press:  22 October 2018

Tom Beer
Affiliation:
IUGG Commission on Climatic and Environmental Change (CCEC)
Jianping Li
Affiliation:
Beijing Normal University
Keith Alverson
Affiliation:
UNEP International Environmental Technology Centre
Get access

Summary

The principal unknown is how the ocean circulation will change on centennial time scales as a result of changes in radiative forcing associated with the increase in atmospheric CO2 and global warming. For centennial and longer time scale variability, abrupt climate changes that have occurred during the last 100,000 years and about the transition from the Last Glacial Maximum 21,000 years ago to the present provide instruction. For both the abrupt changes known as Dansgaard–Oeschager warm events and Heinrich cold events and for the transition from glacial climate to the present mild climate, changes in the ocean circulation, particularly in the Atlantic Meridional Overturning Circulation, are implicated as central to these climate shifts: the principal unknown is what causes the sudden changes in the Atlantic Meridional Overturning Circulation, changes that are not found in present coupled climate models.
Type
Chapter
Information
Global Change and Future Earth
The Geoscience Perspective
, pp. 159 - 176
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkins, J. F. (2013). The role of deep ocean circulation in setting glacial climates. Paleoceanography, 28, 539561.Google Scholar
Alley, R. B., and Clark, P. U. (1999). The deglaciation of the Northern Hemisphere: a global perspective. Annu. Rev. Earth Planet. Sci., 27, 149182.CrossRefGoogle Scholar
Bamber, J. et al. (2012). Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett., 39, L19501, doi: 10.1029/2012GL052552.CrossRefGoogle Scholar
Bard, E. (2002). Climate shock: abrupt climate changes over millennial time scales. Physics Today, 55 (December), 3238.Google Scholar
Bard, E., and Frank, M. (2006). Climate change and solar variability: what’s new under the sun? Earth planet. Sci. Lett., 248, 114.Google Scholar
Beal, L. M., and Elipot, S. (2016). Decadal changes in the Agulhas Current. Nature, 540, 570573.Google Scholar
Bender, M. L. (2013). Paleoclimate. Princeton University Press, Princeton, NJ.Google Scholar
Bindoff, N. L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J., Gulev, S., Hanawa, K., Le Quéré, C., Levitus, S., Nojiri, Y., Shum, S. K., Talley, L. D. and Unnikrishnan, A. (2007). Observations: Oceanic Climate Change and Sea Level. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K. B., Tignor, M. and Miller, H. L. Cambridge University Press, Cambridge.Google Scholar
Birchfield, G. E., Wang, H., and Rich, J. J. (1994). Century/millennium internal climate variability: an ocean-atmosphere-continental icesheet model. J. Geophys. Res., 99, 1245912470.Google Scholar
Bond, G. C., and Lotti, C. (1995). Iceberg discharges into the North Atlantic on millennial time scales during the last glacial. Science, 267, 10051010.Google Scholar
Bond, G. et al. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 21302136.Google Scholar
Broecker, W. S., Peteet, D. M., and Rind, D. (1985). Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 315, 2126.Google Scholar
Broecker, W. S. et al. (1990). A salt oscillator in the glacial North Atlantic? 1. The concept. Paleoceanography, 5, 469477.Google Scholar
Bryden, H. L., and Imawaki, S. (2001). Ocean heat transport. In Ocean Circulation and Climate, edited by Siedler, G., Church, J., and Gould, J. Academic Press, Amsterdam, 455474.Google Scholar
Calov, R., Ganopolski, A., Petoukhov, V., and Claussen, M. (2002). Large-scale instabilities of the Laurentide Ice Sheet simulated in a fully coupled climate-system model. Geophys. Res. Lett., 29 (24), 69.169.4, doi:10.1029/2002GL016078.CrossRefGoogle Scholar
Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N., and Scott, J. D. (2012). Enhanced upper ocean stratification with climate change in the CMIP3 models, J. Geophys. Res., 117, C04031, doi:10.1029/2011JC007409.Google Scholar
Chidichimo, M. P., Donohue, K. A., Watts, D. R., and Tracey, K. L. (2014). Baroclinic Transport Time Series of the Antarctic Circumpolar Current Measured in Drake Passage, J. Phys. Oceanogr., 44: 18291853, doi:10.1175/JPO-D-13-071.1.Google Scholar
Clement, A. C., and Peterson, L. C. (2008). Mechanisms of abrupt climate change of the last glacial period. Rev. Geophys., 46, RG4002, doi:10.1029/2006RG000204.Google Scholar
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J. and Wehner, M. (2013): Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M. Cambridge University Press, Cambridge.Google Scholar
Cubasch, U., and Meehl, G. A. (2001). Projections for future climate change. Climate Change 2001: The Scientific Basis, edited by Houghton, J. T. et al. Cambridge University Press, Cambridge, 525582.Google Scholar
Curry, W. B., and Oppo, D. W. (2005). Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography, 20, PA1017, doi:10.1029/2004PA001021.Google Scholar
Dansgaard, W. et al. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218220.Google Scholar
DeConto, R. M., and Pollard, D. (2016). Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597.CrossRefGoogle ScholarPubMed
Delworth, T. L., and Mann, M. E. (2000). Observed and Simulated Multidecadal Variability in the Northern Hemisphere, Clim. Dyn., 16, 661676.Google Scholar
Dijkstra, H. A. (2007). Characterization of the multiple equilibria regime in a global ocean model. Tellus, A, 59 (5), 695705, doi:10.1111/J.1600-0870.2007.00267.xCrossRefGoogle Scholar
Duplessy, J. et al. (1988). Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography, 3, 343360.Google Scholar
Durack, P. J., Wijffels, S. E., and Matear, R. J. (2012). Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458.Google Scholar
Fanning, A. F., and Weaver, A. J. (1997). Temporal-geographical meltwater influences on the North Atlantic conveyor: implications for the Younger Dryas. Paleoceanography, 12, 307320.Google Scholar
EPICA Community Members (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195198Google Scholar
Flückiger, J., Knutti, R., and White, W. C. (2006). Oceanic processes as potential trigger and amplifying mechanisms for Heinrich events. Paleoceanography, 21, PA2014, doi:10.1029/2005PA001204.Google Scholar
Ganopolski, A., and Rahmstorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409, 153158.Google Scholar
Ganopolski, A., and Rahmstorf, S. (2002). Abrupt glacial climate changes due to stochastic resonance. Phys. Rev. Lett., 88, 038501–1-038501–4.Google Scholar
Gruber, N., Gloor, M., Mikaloff Fletcher, S. E., Doney, S. C., Dutkiewicz, S., Follows, M. J., Gerber, M., Jacobson, A. R., Joos, F., Lindsay, K., Menemenlis, D., Mouchet, A., Muller, S. A., Sarmiento, J. L. and Takahashi, T. (2009). Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem. Cycles, 23, GB1005, doi:10.1029/2008GB003349.Google Scholar
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M. and Zhai, P. M. (2013). Observations: Atmosphere and Surface. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M. Cambridge University Press, Cambridge.Google Scholar
Hawkins, E., Smith, R., Allison, L., Gregory, J., Woollings, T., Pohlmann, H., and de Cuevas, B. (2011). Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys. Res. Lett., 38, L16699.Google Scholar
He, F. (2011). Simulating transient climatic evolution of the last deglacial cycle with CCSM3. Unpublished Ph.D. thesis, University of Wisconsin, Madison, WI 53706.Google Scholar
He, F. et al. (2013). Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature, 494, 8185.Google Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res., 29, 143152.Google Scholar
Hemming, S. R. (2004). Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys., 42 (1), RG1005, doi:10.1029/2003RG000128.Google Scholar
IPCC (2013). Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. Cambridge University Press, Cambridge.Google Scholar
Jackson, L. C., Peterson, K. A., Roberts, C. D., and Wood, R. A. (2016). Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening, Nature Geoscience, 9, 518522, doi:10.1038/ngeo2715.Google Scholar
Kageyama, M., Paul, A., Roche, D. M., and Van Meerbeeck, C. J. (2010). Modelling glacial climatic millennial-scale variability related to changes in the Atlantic overturning circulation: a review. Quat. Sci. Rev., 29, 29312956.Google Scholar
Kageyama, M. et al. (2013). Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study. Clim. Past, 9, 935953.Google Scholar
Levang, S. J., and Schmitt, R. W. (2015). Centennial changes of the global water cycle in CMIP5 Models, J. Phys. Oceanography, 45, 64896502.Google Scholar
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S., and Zweng, M. M. (2012). World ocean heat content and thermosteric sea level change (0–2000m) 1955–2010. Geophys. Res. Lett., 39, L10603.Google Scholar
Liu, Z. et al. (2009). Transient simulation of the last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325, 310314.Google Scholar
Lynch-Stieglitz, J. et al. (2007). Atlantic meridional overturning circulation during the Last Glacial Maximum. Science, 316, 6669.CrossRefGoogle ScholarPubMed
Mamayev, O. I. (1975). Temperature-Salinity Analysis of World Ocean Waters. Elsevier, New York.Google Scholar
Manabe, S., and Stouffer, R. (1997). Coupled ocean-atmosphere model response to freshwater input: comparison to Younger Dryas event. Paleoceanography, 12, 321336.Google Scholar
Marshall, S. J., and Clarke, G. K. C. (1997a). A continuum mixture model of ice stream thermomechanics in the Laurentide Ice Sheet 1. Theory. J. Geophys. Res., 102 (B9), 2059920613.Google Scholar
Marshall, S. J., and Clarke, G. K. C. (1997b). A continuum mixture model of ice stream thermomechanics in the Laurentide Ice Sheet 2. Application to the Hudson Strait ice stream. J. Geophys. Res., 102 (B9), 2061520637.Google Scholar
Marson, J. M., Wainer, I., Mata, M. M. and Liu, Z. (2014). The impacts of deglacial meltwater forcing on the South Atlantic Ocean deep circulation since the Last Glacial Maximum. Clim. Past, 10, 17231734.Google Scholar
Marson, J. M., Mysak, L. A., Mata, M. M., and Wainer, I. (2015). Evolution of the deep Atlantic water masses since the last glacial maximum based on a transient run of NCAR CCSM3. Clim. Dyn., doi:10.1007/s00382-015-2876-7.Google Scholar
McManus, J. F. et al. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834837.Google Scholar
Meinen, C. S., Baringer, M. O., and Garcia, R. F. (2010). Florida Current transport variability: an analysis of annual and longer-period signals. Deep-Sea Res. Pt. I, 57, 835846.Google Scholar
Menviel, L. et al. (2014). Atlantic-Pacific seesaw and its role in outgassing CO2 during Heinrich events. Paleoceanography, 29, 5870.Google Scholar
Nikurashin, M., and Vallis, G. (2012). A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667.Google Scholar
Oka, A., Hasumi, H., and Abe-Ouchi, A. (2012). The thermal threshold of the Atlantic meridional overturning circulation and its control by wind stress forcing during glacial climate. Geophys. Res. Lett., 39, L09709, doi:10.1029/2012GL051421.Google Scholar
Papa, B. D., Mysak, L. A., and Wang, Z. (2006). Intermittent ice sheet discharge events in northeastern North America during the last glacial period. Clim. Dyn., 26, 201216.Google Scholar
Peltier, W. R., and Vettoretti, G. (2014). Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: a “kicked” salt oscillator in the Atlantic. Geophys. Res. Lett., 41, doi:10.1002/2014GL061413.Google Scholar
Purkey, S. G., and Johnson, G. C. (2010). Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim., 23, 63366351.Google Scholar
Rahmstorf, S. (1996). On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn., 12, 799811.Google Scholar
Rahmstorf, S. (2002). Ocean circulation and climate during the past 120,000 years. Nature, 419, 207214.Google Scholar
Rahmstorf, S., and Alley, R. B. (2002). Stochastic resonance in glacial climate. Eos, 83, 129135.Google Scholar
Rahmstorf, S. et al. (2005). Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett., 32, L23605, doi:10.1029/2005GL023655.Google Scholar
Rahmstorf, S. et al. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475480.Google Scholar
Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., Gulev, S., Johnson, G. C., Josey, S. A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L. D., and Wang, F. (2013). Observations: Ocean. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. Cambridge University Press, Cambridge.Google Scholar
Roberts, C. D., Jackson, L., and McNeall, D. (2014). Is the 2004–2012 reduction of the Atlantic meridional overturning circulation significant? Geophys. Res. Lett., 41 (9), 32043210, doi: 10.1002/2014GL059473.Google Scholar
Ruddiman, W. R. (2008). Earth’s Climate: Past and Future, 2nd edition. W. H. Freeman, New York.Google Scholar
Saenko, O. A., Fyfe, J. C., and England, M. H. (2005). On the response of the oceanic wind-driven circulation to atmospheric CO2 increase. Clim. Dyn., 25, 415426.Google Scholar
Sarnthein, M. et al. (1994). Changes in east Atlantic deepwater circulation over the last 30,000 years: eight time slice reconstructions. Paleoceanography, 9, 209267.Google Scholar
Schneider von Deimling, T., Ganopolski, A., Held, H., and Rahmstorf, S. (2006). How cold was the last glacial maximum? Geophys. Res. Lett., 33, L14709, doi:10.1029/2006GL026484.Google Scholar
Siedler, G., Church, J., and Gould, J. (editors) (2001). Ocean Circulation and Climate. Academic Press, Amsterdam.Google Scholar
Smeed, D. A., McCarthy, G., Cunningham, S. A., Frajka-Williams, E., Rayner, D., Johns, W. E., Meinen, C., Baringer, M. O., Moat, M. I., Duchez, A., and Bryden, H. L. (2014). Observed decline of the Atlantic Meridional Overturning Circulation 2004 to 2012, Ocean Science, 10, 2938.Google Scholar
Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230.Google Scholar
Stouffer, R. J., Seidov, D., and Haupt, B. J. (2007). Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean. J. Climate, 20, 436448.Google Scholar
Talley, L. D., Pickard, G., and Emery, W. J. (2011). Descriptive Physical Oceanography: An Introduction. Academic Press, Amsterdam.Google Scholar
Valdes, P. (2011). Built for stability. Nature Geoscience, 4, 414416, doi:10.1038/ngeo1200.Google Scholar
Van Geel, B. et al. (1999). The role of solar forcing upon climate change. Quat. Sci. Rev., 18, 331338.Google Scholar
Van Meerbeeck, C. J., Roche, D. M., and Renssen, H. (2011). Assessing the sensitivity of the North Atlantic Ocean circulation to freshwater perturbation in various glacial climate states. Clim. Dyn., 37, 19091927.Google Scholar
Voelker, A. H. et al. (2002). Global distribution of centennial-scale records for marine isotope stage (MIS) 3. Quat. Sci. Rev., 21, 11851214.Google Scholar
Wang, Z., and Mysak, L. A. (2001). Ice sheet-thermohaline circulation interactions in a climate model of intermediate complexity. J. Oceanography, 57, 481494.Google Scholar
Wang, Z., and Mysak, L. A.(2006). Glacial abrupt climate changes and Dansgaard-Oeschger oscillations in a coupled climate model. Paleoceanography, 21, PA2001, doi:10.1029/2005PA001238.Google Scholar
Weaver, A. J., Saenko, O. A., Clark, P. U., and Mitrovica, J. X. (2003). Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science, 299, 17091713.Google Scholar
Weaver, A. J. et al. 2012: Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophys. Res. Lett., 39, L20709.Google Scholar
Wijffels, S. E., Schmitt, R. W., Bryden, H. L., and Stigebrandt, A. (1992). Transport of freshwater by the oceans. J. Phys. Oceanography, 22, 155162.Google Scholar
Wunsch, C. 2015. Modern Observational Physical Oceanography, Princeton University Press, Princeton, NJ.Google Scholar
Wunsch, C., and Ferrari, R. (2004). Vertical mixing, energy and the general circulation of the ocean. Annu. Rev. Fluid Mech., 36, 281314.Google Scholar
Zhang, Xiao, Prange, M., Merkel, U., and Schulz, M. (2014). Instability of the Atlantic overturning circulation during Marine Isotope Stage 3. Geophys. Res. Lett., 41, doi:10.1002/2014GRL060321.Google Scholar
Zhang, Xu, Lohmann, G., Knorr, G., and Xu, X. (2013). Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation. Clim. Past, 9, 23192333.Google Scholar
Zhang, Xu, Lohmann, G., Knorr, G., and Purcell, C. (2014). Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 290, 290294.Google Scholar
Zika, J. D., England, M. H., and Sijp, W. P. (2012). The ocean circulation in thermohaline coordinates. J. Phys. Oceanogr., 42, 708724, doi:10.1175/JPO-D-11-0139.1.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×