Book contents
- A Guide to Monte Carlo Simulations in Statistical Physics
- A Guide to Monte Carlo Simulations in Statistical Physics
- Copyright page
- Contents
- Preface
- 1 Introduction
- 2 Some necessary background
- 3 Simple sampling Monte Carlo methods
- 4 Importance sampling Monte Carlo methods
- 5 More on importance sampling Monte Carlo methods for lattice systems
- 6 Off-lattice models
- 7 Reweighting methods
- 8 Quantum Monte Carlo methods
- 9 Monte Carlo renormalization group methods
- 10 Non-equilibrium and irreversible processes
- 11 Lattice gauge models: a brief introduction
- 12 A brief review of other methods of computer simulation
- 13 Monte Carlo simulations at the periphery of physics and beyond
- 14 Monte Carlo studies of biological molecules
- 15 Emerging trends
- Index
- References
12 - A brief review of other methods of computer simulation
Published online by Cambridge University Press: 24 November 2021
- A Guide to Monte Carlo Simulations in Statistical Physics
- A Guide to Monte Carlo Simulations in Statistical Physics
- Copyright page
- Contents
- Preface
- 1 Introduction
- 2 Some necessary background
- 3 Simple sampling Monte Carlo methods
- 4 Importance sampling Monte Carlo methods
- 5 More on importance sampling Monte Carlo methods for lattice systems
- 6 Off-lattice models
- 7 Reweighting methods
- 8 Quantum Monte Carlo methods
- 9 Monte Carlo renormalization group methods
- 10 Non-equilibrium and irreversible processes
- 11 Lattice gauge models: a brief introduction
- 12 A brief review of other methods of computer simulation
- 13 Monte Carlo simulations at the periphery of physics and beyond
- 14 Monte Carlo studies of biological molecules
- 15 Emerging trends
- Index
- References
Summary
In the previous chapters of this text we have examined a wide variety of Monte Carlo methods in depth. Although these are exceedingly useful for many different problems in statistical physics, there are some circumstances in which the systems of interest are not well suited to Monte Carlo study. Indeed there are some problems which may not be treatable by stochastic methods at all, since the time-dependent properties as constrained by deterministic equations of motion are the subject of the study. The purpose of this chapter is thus to provide a very brief overview of some of the other important simulation techniques in statistical physics. Our goal is not to present a complete list of other methods or even a thorough discussion of these methods which are included, but rather to offer sufficient background to enable the reader to compare some of the different approaches and better understand the strengths and limitations of Monte Carlo simulations.
- Type
- Chapter
- Information
- A Guide to Monte Carlo Simulations in Statistical Physics , pp. 484 - 518Publisher: Cambridge University PressPrint publication year: 2021