Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgments
- Introduction
- Part I Formalism
- 1 Introduction to general relativity 1: Kinematics and Einstein equations
- 2 Introduction to general relativity 2: Vielbein and spin connection, anti-de Sitter space, black holes
- 3 Introduction to supersymmetry 1:Wess–Zumino models, on-shell and off-shell supersymmetry
- 4 Introduction to supersymmetry 2:Multiplets and extended supersymmetry
- 5 Introduction to supersymmetry 3: Superspace formalism in d = 4: Perturbative susy breaking
- 6 Four-dimensional on-shell supergravity and how to count degrees of freedom
- 7 Three-dimensional N = 1 off-shell supergravity
- 8 Coset theory and rigid superspace
- 9 Covariant formulation of YM in rigid superspace and local superspace formalisms
- 10 N = 1 Four-dimensional off-shell supergravity
- 11 N = 1 Four-dimensional supergravity in superspace
- 12 Superspace actions and coupling supergravity with matter
- 13 Kaluza–Klein (KK)-dimensional reduction and examples
- 14 Spherical harmonics and the KK expansion on sphere, coset, and group spaces
- 15 N = 2 sugra in 4 dimensions, general sugra theories, and N = 1 sugra in 11 dimensions
- Part II Applications
- References
- Index
4 - Introduction to supersymmetry 2:Multiplets and extended supersymmetry
from Part I - Formalism
Published online by Cambridge University Press: 14 November 2024
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgments
- Introduction
- Part I Formalism
- 1 Introduction to general relativity 1: Kinematics and Einstein equations
- 2 Introduction to general relativity 2: Vielbein and spin connection, anti-de Sitter space, black holes
- 3 Introduction to supersymmetry 1:Wess–Zumino models, on-shell and off-shell supersymmetry
- 4 Introduction to supersymmetry 2:Multiplets and extended supersymmetry
- 5 Introduction to supersymmetry 3: Superspace formalism in d = 4: Perturbative susy breaking
- 6 Four-dimensional on-shell supergravity and how to count degrees of freedom
- 7 Three-dimensional N = 1 off-shell supergravity
- 8 Coset theory and rigid superspace
- 9 Covariant formulation of YM in rigid superspace and local superspace formalisms
- 10 N = 1 Four-dimensional off-shell supergravity
- 11 N = 1 Four-dimensional supergravity in superspace
- 12 Superspace actions and coupling supergravity with matter
- 13 Kaluza–Klein (KK)-dimensional reduction and examples
- 14 Spherical harmonics and the KK expansion on sphere, coset, and group spaces
- 15 N = 2 sugra in 4 dimensions, general sugra theories, and N = 1 sugra in 11 dimensions
- Part II Applications
- References
- Index
Summary
To define irreducible representations, spinors with dotted and undotted indices are defined. Irreducible representations of susy are defined, first in the massless case, then in the massive case, with and without central charges. The R-symmetry of the algebras is defined. The Lagrangians for the d = 4 multiplets, N = 1 chiral, N = 1 vector, their coupling and the N = 2 models, and finally the unique N = 4 model, are described.
Keywords
- Type
- Chapter
- Information
- Introduction to Supergravity and its Applications , pp. 43 - 55Publisher: Cambridge University PressPrint publication year: 2024