Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-24T21:14:44.894Z Has data issue: false hasContentIssue false

2 - Australia’s Acacia: unrecognised convergent evolution

from Part I - Ancient invaders

Published online by Cambridge University Press:  05 February 2014

Joseph T. Miller
Affiliation:
Centre for Australian National Biodiversity Research
Martin Burd
Affiliation:
Monash University
Herbert H. T. Prins
Affiliation:
Wageningen Universiteit, The Netherlands
Iain J. Gordon
Affiliation:
The James Hutton Institute, Scotland
Get access

Summary

Introduction

This chapter takes a slightly different, long-term, view of continental collisions and invasions. Here we investigate Acacia s.l. from the Eocene to the Miocene to understand how it invaded the evolving landscapes of the Americas, Africa and Australia. This history highlights the convergent evolution within the paraphyletic genus as species invaded and dominated new arid landscapes that expanded at this time. Different lineages of Acacia s. l. evolved remarkably similar suites of adaptations in response to the increasing aridity, obscuring the independent evolutionary origins of ecological traits which we are only now discovering.

The taxonomic history of Acacia s.l. has been and still is a complex topic. Taxonomists defined Acacia s.l. over centuries of plant discovery as botanists explored the world. This ad hoc compilation of species into a genus resulted in the amalgamation of species that have converged within a similar type of habitat but the main morphological characters that define Acacia s. l. are symplesiomorphies, not synapomorphies of a unique lineage. It is now accepted that the genus, in its broad sense, is not monophyletic and thus it has been split into three large genera and two small genera.

Type
Chapter
Information
Invasion Biology and Ecological Theory
Insights from a Continent in Transformation
, pp. 23 - 38
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerly, D. D., Schwilk, D. W. and Webb, C. O. (2006). Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87: S50–S61.CrossRefGoogle ScholarPubMed
Aizen, M. A., Morales, C. L. and Morales, J. M. (2008). Invasive mutualists erode native pollination webs. PLoS Biology 6: e31. .CrossRefGoogle ScholarPubMed
Basilio, A. M., Medan, D., Torrenta, J. O. and Bartoloni, N. J. (2006). A year-long plant-pollinator network. Austral Ecology 31: 975–983.CrossRefGoogle Scholar
Bentham, G. (1875). Revision of the suborder Mimoseae. Transactions of the Linnean Society of London 30: 335–664.CrossRefGoogle Scholar
Bosch, J., Gonzalez, A. M. M., Rodrigo, A. and Navaro, D. (2009). Plant–pollinator networks: adding the pollinator’s perspective. Ecology Letters 12: 409–419.CrossRefGoogle ScholarPubMed
Bouchenak-Khelladi, Y., Maurin, O., Hurter, J. and Van der Bank, M. (2010). The evolutionary history and biogeography of Mimosoideae (Leguminosae): an emphasis on African acacias. Molecular Phylogenetics and Evolution 57: 495–508.CrossRefGoogle ScholarPubMed
Brown, G. K., Murphy, D. J. and Ladiges, P. Y. (2011). Relationships of the Australo-Malesian genus Paraserianthes (Mimosoideae: Leguminosae) identifies the sister group of Acacia sensu stricto and two biogeographical tracks. Cladistics 27: 380–390.CrossRefGoogle Scholar
Brown, G. K., Murphy, D J., Miller, J. T. and Ladiges, P. Y. (2008). Acacia s.s. and its relationship among tropical legumes, Tribe Ingeae (Leguminosae: Mimosoideae). Systematic Botany 33: 739–751.CrossRefGoogle Scholar
Candolle, A. P., (1825). Prodromus systematis naturalis regni vegetabilis. Vol. 2. Paris: sumptibus sociorum Treuttel et Würtz.Google Scholar
Clarke, H. D., Downie, S. R. and Seigler, D. S. (2000). Implications of chloroplast DNA restriction site variation for systematics of Acacia (Fabaceae: Mimosoideae). Systematic Botany 25: 618–632.CrossRefGoogle Scholar
Cook, J. M., Rokas, A., Pagel, M. and Stone, G. N. (2002). Evolutionary shifts between host oak selection and host plant organs in Andricus gallwasps. Evolution 56: 1821–1830.CrossRefGoogle Scholar
Coyne, J. A. and Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer.Google Scholar
Crisp, M. D., Arroyo, M. T. K., Cook, L. G. et al. (2009). Phylogenetic biome conservatism on a global scale. Nature 458: 754–756.CrossRefGoogle ScholarPubMed
Dennill, G. B. (1990). The contribution of a successful biocontrol project to the theory of agent selection in weed biocontrol: the gall wasp Trichilogaster acaciaelongifoliae and the weed Acacia longifolia. Agriculture, Ecosystems and Environment 31: 47–154.CrossRefGoogle Scholar
Dennill, G. B., Donnelly, D. and Chown, S. L. (1993). Expansion of host-plant range of a biological agent Trichilogaster acaciaelongifoliae (Pteromalidae) released against the weed Acacia longifolia in South Africa. Agriculture, Ecosystems and Environment 43: 1–10.CrossRefGoogle Scholar
Gibson, M. R., Richardson, D. M., Marchante, E. et al. (2011). Reproductive biology of Australian acacias: important mediator of invasiveness?Diversity and Distributions 17: 911–933.CrossRefGoogle Scholar
González-Orozco, C. E., Miller, J. T., and Laffan, S. W. (2011). Spatial distribution of species richness and endemism of the genus Acacia in Australia. Australian Journal of Botany, 59: 601–609.CrossRefGoogle Scholar
Joy, J. B. and Crespi, B. J. (2007). Adaptive radiation of gall-inducing insects within a single host-plant species. Evolution 61: 784–795.CrossRefGoogle ScholarPubMed
Kenrick, J. and Knox, R. B. (1985). Self-incompatibility in the nitrogen-fixing tree, Acacia retinodes: quantitative cytology of pollen tube growth. TAG Theoretical and Applied Genetics V 69: 481.CrossRefGoogle ScholarPubMed
Lafay, B. and Burdon, J. J. (2001). Small-subunit rRNA genotyping of rhizobia nodulating Australian Acacia spp. Applied and Environmental Microbiology 67: 396–402.CrossRefGoogle ScholarPubMed
Lavin, M., Herendeen, P. S. and Wojciechowski, M. F. (2005). Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Systematic Biology 54: 575–594.CrossRefGoogle ScholarPubMed
Lewis, G. P., Schrire, B., Mackinder, B. and Lock, M. (2005). Legumes of the World. Richmond, UK: Royal Botanic Gardens, Kew.Google Scholar
Luckow, M., Miller, J. T., Murphy, D. J. and Livshultz, T. (2003). A phylogenetic analysis of the Mimosoideae (Leguminosae) based on chloroplast DNA sequence data. In Klitgaard, B. B. and Bruneau, A. (eds), Advances in Legume Systematics, part 10. Richmond, UK: Royal Botanic Gardens, Kew, pp. 197–220.Google Scholar
Marchante, H., Freitas, H. and Hoffmann, J. H. (2011). Assessing the suitability and safety of a well-known bud-galling wasp, Trichilogaster acaciaelongifoliae, for biological control of Acacia longifolia in Portugal. Biological Control 56:193–201.CrossRefGoogle Scholar
Maslin, B. R. (1988). Should Acacia be divided?Bulletin of the International Group for the Study of Mimosoideae 16: 54–76.Google Scholar
Maslin, B. R., Miller, J. T. and Seigler, D. S. (2003). Overview of the generic status of Acacia (Leguminosae : Mimosoideae). Australian Systematic Botany 16: 1–18.CrossRefGoogle Scholar
Memmott, J. (1999). The structure of a plant-pollinator food web. Ecology Letters 2: 276–280.CrossRefGoogle Scholar
Memmott, J. and Waser, N. M. (2002). Integration of alien plants into a native flower–pollinator visitation web. Proceedings of the Royal Society of London B 269: 2395–2399.CrossRefGoogle ScholarPubMed
Miller, J. T. and Bayer, R. J. (2000). Molecular phylogenetics of Acacia (Fabaceae: Mimosoideae) based on chloroplast TrnK/MatK and nuclear histone H3-D sequences. In Herendeen, P. S. and Bruneau, A. (eds), Advances in Legume Systematics 9. Richmond, UK: Royal Botanic Gardens, Kew.Google Scholar
Miller, J. T. and Bayer, R. J. (2001). Molecular phylogenetics of Acacia (Fabaceae : Mimosoideae) based on the chloroplast matK coding sequence and flanking trnK intron spacer regions. American Journal of Botany 88: 697–705.CrossRefGoogle ScholarPubMed
Miller, J. T. and Miller, C. (2011). Acacia seedling morphology: correlation of juvenile leaf forms and seed weight. Australian Journal of Botany. 59: 185–196.CrossRefGoogle Scholar
Miller, J. T. and Seigler, D. S. (2012). The generic status of Acacia sensu lato (Leguminosae: Mimosoideae). Australian Systematic Botany. 25: 217–224.CrossRefGoogle Scholar
Miller, J. T., Grimes, J. W., Murphy, D. J., Bayer, R. J. and Ladiges, P. Y. (2003). A phylogenetic analysis of the Acacieae and Ingeae (Mimosoideae : Fabaceae) based on trnK, matK, psbA-trnH, and trnL/trnF sequence data. Systematic Botany 28: 558–566.Google Scholar
Miller, J. T., Murphy, D. M., Brown, G. K., Richardson, D. M. and González-Orozco, C. E. (2011). The evolution and phylogenetic placement of invasive Acacia species. Diversity and Distributions 17: 848–860.CrossRefGoogle Scholar
Miller, P. (1754). The Gardeners’ Dictionary. Abr. 4th edn. London.Google Scholar
Nyman, T., Widmer, A. and Roininen, H. (2000). Evolution of gall morphology and host-plant relationships in willow-feeding sawflies (Hymenoptera: Tenthredinidae). Evolution 54: 526–533.CrossRefGoogle Scholar
Olesen, J. M. and Jordano, P. (2002). Geographic patterns in plant-pollinator mutualistic networks. Ecology 83: 2416–2424.Google Scholar
Pedley, L. (1986). Derivation and dispersal of Acacia (Leguminosae) with particular reference to Australia and the recognition of Senegalia and Racosperma. Botanical Journal of the Linnean Society 92: 219–254.CrossRefGoogle Scholar
Prescott, M. N. (2005). The pollination ecology of a south-eastern Australia Acacia community. PhD thesis, Oxford University, Oxford, UK.
Prinsloo, G. L. and Neser, O. C. (2007). Revision of the pteromalid wasp genus Trichilogaster Mayr (Hymenoptera: Chalcidoidea): gall-inducers on Australian acacias. African Entomology 15: 161–184.CrossRefGoogle Scholar
Prinzing, A., Durk, W., Klotz, S. and Brandl, R. (2001). The niche of higher plants: evidence for phylogenetic conservatism. Proceedings of the Royal Society of London B 268: 2383–2389.CrossRefGoogle ScholarPubMed
Raine, N. E., Willmer, P. and Stone, G. N. (2002). Spatial structuring and floral avoidance behavior prevent ant-pollinator conflict in a Mexican ant–Acacia. Ecology 83: 3086–3096.Google Scholar
Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P. and Bascompte, J. (2007). Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448: 925–928.CrossRefGoogle ScholarPubMed
Richardson, D. M., Carruthers, J., Hui, C. et al. (2011). Human-mediated introductions of Australian Acacia species: a global experiment in biogeography. Diversity and Distributions 17: 771–787.CrossRefGoogle Scholar
Rico Arce, L. and Bachman, S. (2006). A taxonomic revision of Acaciella (Leguminosae, Mimosoideae). Annales del Jardin Botanico de Madrid 63: 189–244.Google Scholar
Robinson, J. and Harris, S. A. (2000). A plastid DNA phylogeny of the genus Acacia Miller (Acacieae, Leguminosae). Botanical Journal of the Linnean Society 132: 195–222.CrossRefGoogle Scholar
Sargent, R. D. and Ackerly, D. D. (2008). Plant–pollinator interactions and the assembly of plant communities. Trends in Ecology and Evolution 23: 123–130.CrossRefGoogle ScholarPubMed
Schrire, B. D., Lewis, G. P. and Lavin, M. (2005). Biogeography of the Leguminosae. In Lewis, G., Schrire, B., Mackinder, B. and Lock, M. (eds), Legumes of the World. Richmond, UK: Royal Botanic Gardens, Kew, pp. 21–54.Google Scholar
Seigler, D. S., Ebinger, J. E. and Miller, J. T. (2006a). Mariosousa, a new segregate genus from Acacia s.l. (Fabaceae, Mimosoideae) from Central and North America. Novon 16: 413–420.CrossRefGoogle Scholar
Seigler, D. S., Ebinger, J. E. and Miller, J. T. (2006b). The genus Senegalia (Fabaceae: Mimosoideae) from the New World. Phytologia 88: 38–93.Google Scholar
Stone, G. N., Hernandez-Lopez, A., Nicholls, J. A. et al. (2009). Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution 63: 854–869.CrossRefGoogle ScholarPubMed
Stone, G. N., Raine, N. E., Prescott, M. and Willmer, P. G. (2003). Pollination ecology of acacias (Fabaceae, Mimosoideae). Australian Systematic Botany 16: 103–118.CrossRefGoogle Scholar
Stone, G. N., Willmer, P. and Rowe, J. A. (1998). Partitioning of pollinators during flowering in an Acacia community, Ecology 79: 2808–2827.CrossRefGoogle Scholar
Vanstone, V. and Paton, D. (1988). Extrafloral nectaries and pollination of Acacia pycnantha Benth. by birds. Australian Journal of Botany 36: 519–531.CrossRefGoogle Scholar
Vásquez, D. P. and Aizen, M. A. (2004). Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology 85: 1251–1257.CrossRefGoogle Scholar
Vassal, J. (1972). Apport des recherches ontogeniques et seminologiques a l’etude morphologique, taxonomique et phylogenique du genre Acacia. Bulletin de la societe d’histoire naturelle de Toulouse 108: 105–247.Google Scholar
Vilà, M., Bartomeus, I., Dietzsch, A. C. et al. (2009). Invasive plant integration into native plant–pollinator networks across Europe. Proceedings of the Royal Society of London B 276: 3887–3893.CrossRefGoogle ScholarPubMed
Willdenow, C. L. (1806). Caroli a Linne Species Plantarium, 4th edn, Vol. 4. Berlin.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×