Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T20:19:03.141Z Has data issue: false hasContentIssue false

3 - The mixed success of Mimosoideae clades invading into Australia

from Part I - Ancient invaders

Published online by Cambridge University Press:  05 February 2014

Kyle W. Tomlinson
Affiliation:
Wageningen University
Herbert H. T. Prins
Affiliation:
Wageningen Universiteit, The Netherlands
Iain J. Gordon
Affiliation:
The James Hutton Institute, Scotland
Get access

Summary

Introduction

Mimosoideae are a dominant plant clade in Australia with more than 1000 taxa recognised. Most species belong to genus Acacia s.s. Mill. and evolved in Australia during the post-Gondwanan isolation. Very few species (<20) belong to genera that evolved outside Australia (Vachellia Wight & Arn., Senegalia Raf.; until quite recently both included under Acacia s.l.) and have subsequently invaded into Australia (Chapter 2). Most of these are descended from individuals that immigrated into Australia and New Guinea prior to European migrations (hereafter pre-colonial species), while a few were either accidentally or deliberately introduced by Europeans (hereafter colonial species). The relative abundance and distribution of the species varies significantly between early and later invaders: the later colonial invaders show wider or rapidly expanding distributions and superior dominance status in the communities where they are found (Table 3.1; Australian Biological Resources Study 2001; Kriticos et al. 2003). The early colonial species range from being (more usually) abundant to locally dominant, in some instances (Table 3.1). This suggests that either trait differences between the species have affected their relative performance under modern, post-colonial systems of native vegetation management, or that human activities have particularly favoured the spread of post-colonial species.

Type
Chapter
Information
Invasion Biology and Ecological Theory
Insights from a Continent in Transformation
, pp. 39 - 57
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auld, T. D. and Myerscough, P. J. (2006). Population dynamics of the shrub Acacia suaveolens (Sm.) Willd.: seed production and predispersal seed predation. Australian Journal of Ecology 11: 219–234.CrossRefGoogle Scholar
Australian Biological Resources Study (2001). Flora of Australia, Vol. 11A and 11B: Mimosaceae: Acacia. Melbourne: CSIRO Publishing.Google Scholar
Baskin, C. C. and Baskin, J. M. (1998). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego, CA: Academic Press.Google Scholar
Boland, D. J., Brooker, M. I. H., Chippendale, G. M. et al. (2006). Forest Trees of Australia, 5th edn. Melbourne: CSIRO Publishing.Google Scholar
Bond, W. J. (2008). What limits trees in C4 grasslands and savannas?Annual Review of Ecology, Evolution and Systematics 39: 641–659.CrossRefGoogle Scholar
Bond, W. J. and Midgley, J. J. (2001). Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology and Evolution 16: 45–51.CrossRefGoogle ScholarPubMed
Bouchenak-Khelladi, Y., Maurin, O., Hurter, J. and van der Bank, M. (2010). The evolutionary history and biogeography of Mimosoideae (Leguminosae): an emphasis on African acacias. Molecular Phylogenetics and Evolution 57: 495–508.CrossRefGoogle ScholarPubMed
Brookhouse, M. (2006). Eucalypt dendrochronology: past, present and potential. Australian Journal of Botany 54: 435–44.CrossRefGoogle Scholar
Brown, J. R. and Archer, S. R. (1999). Shrub invasion of grassland: recruitment is continuous and not regulated by herbaceous biomass or density. Ecology 80: 2385–2396.CrossRefGoogle Scholar
Brown, J. R. and Carter, J. (1998). Spatial and temporal patterns of exotic shrub invasion in an Australian tropical grassland. Landscape Ecology 13: 93–102.CrossRefGoogle Scholar
Burrows, D. M. and Burrows, W. H. (1992). Seed production and litter fall in some eucalypt communities in central Queensland. Australian Journal of Botany 40: 389–403.CrossRefGoogle Scholar
Burrows, W. H., Carter, J. O., Scanlan, J. C. and Anderson, E. R. (1990). Management of savannas for livestock production in north-east Australia: contrasts across the tree-grass continuum. Journal of Biogeography 17: 503–512.CrossRefGoogle Scholar
Caughley, G., Shepherd, N. and Short, J. (1997). Kangaroos: Their Ecology and Management in the Sheep Rangelands of Australia. Cambridge: Cambridge University Press.Google Scholar
Clarke, H. D., Seigler, D. S. and Ebinger, J. E. (1989). Acacia farnesiana (Fabaceae: Mimosoideae) and related species from Mexico, the southwestern U.S., and the Caribbean. Systematic Botany 14: 549–564.CrossRefGoogle Scholar
Crisp, M., Cook, L. and Steane, D. (2004). Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities?Philosophical Transactions of the Royal Society of London B 359: 1551–1571.CrossRefGoogle ScholarPubMed
Davidson, D. W. and Morton, S. R. (1984). Dispersal adaptations of some Acacia species in the Australian arid zone. Ecology 65: 1038–1051.CrossRefGoogle Scholar
Dongmo, A. B., Nguefack, T. and Lacaille-Dubois, M. A. (2005). Antinociceptive and anti-inflammatory activities of Acacia pennata wild (Mimosaceae). Journal of Ethnopharmacology 98: 201–206.CrossRefGoogle Scholar
Duke, J. A. (1981). Handbook of Legumes of World Economic Importance. New York: Plenum Press.CrossRefGoogle Scholar
Dynes, R. A. and Schlink, A. C. (2002). Livestock potential of Australian species of Acacia. Conservation Science Western Australia 4: 117–124.Google Scholar
Edwards, W., Dunlop, M. and Rodgerson, L. (2006). The evolution of rewards: seed dispersal, seed size and elaiosome size. Journal of Ecology 94: 687–694.CrossRefGoogle Scholar
Elton, C. S. (1958). The Ecology of Invasions by Animals and Plants. London: Methuen.CrossRefGoogle Scholar
Fargione, J., Brown, C. S. and Tilman, D. (2003). Community assembly and invasion: an experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences 100: 8916–8920.CrossRefGoogle ScholarPubMed
Fensham, R. J. (1997). Aboriginal fire regimes in Queensland, Australia: analysis of the explorers’ record. Journal of Biogeography 24: 11–22.CrossRefGoogle Scholar
Fensham, R. J. and Fairfax, R. J. (2005). Preliminary assessment of gidgee (Acacia cambagei) woodland thickening in the Longreach district, Queensland. The Rangeland Journal 27: 159–168.CrossRefGoogle Scholar
Gray, A. (1879). The predominance and pertinacity of weeds. American Journal of Science and Arts 118: 161–167.CrossRefGoogle Scholar
Harvey, G. J. (1981). Recovery and viability of prickly acacia (Acacia nilotica) seed ingested by sheep and cattle. Proceedings of the 6th Australian Weeds Conference, Gold Coast 1. Brisbane: The Weed Society of Queensland, pp. 197–201.
Hernandez-Fernandez, M. and Vrba, E. S (2005). A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biological Reviews 80: 269–302.CrossRefGoogle ScholarPubMed
Higgins, S. I., Bond, W. J. and Trollope, W. S. W. (2000). Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. Journal of Ecology 88: 213–229.CrossRefGoogle Scholar
Hoffmann, W. A., Orthen, B. and Franco, A. C. (2004). Constraints to seedling success of savanna and forest trees across the savanna–forest boundary. Oecologia 140: 252–260.CrossRefGoogle ScholarPubMed
Hong, T. D., Linington, S. and Ellis, R. H. (1996). Compendium of Information on Seed Storage Behaviour, Vols 1 and 2. London: Royal Botanic Gardens, Kew.Google Scholar
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.CrossRefGoogle Scholar
Joshi, H. B. (1983). The Silviculture of Indian Trees Revisited, Vol. 4. Delhi: Government of India Press.Google Scholar
Kodela, P. G. and Wilson, P. G. (2006). New combinations in the genus Vachellia (Fabaceae: Mimosoideae) from Australia. Telopea 11: 233–244.Google Scholar
Kriticos, D., Brown, J., Radford, I. and Nicholas, M. (1999). Plant population ecology and biological control: Acacia nilotica as a case study. Biological Control 16: 230–239.CrossRefGoogle Scholar
Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. W. and Maywald, G. F. (2003). Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. Journal of Applied Ecology 40: 111–124.CrossRefGoogle Scholar
Kull, C. A. and Rangan, H. (2008). Acacia exchanges: wattles, thorn trees, and the study of plant movements. Geoforum 39: 1258–1272.CrossRefGoogle Scholar
Lawes, M. J., Murphy, B. P., Midgley, J. J. and Russell-Smith, J. (2011). Are the eucalypt and non-eucalypt components of Australian tropical savannas independent?Oecologia 166: 229–239.CrossRefGoogle ScholarPubMed
McSweeney, C. S., Collins, E. M. C., Blackall, L. L. and Seawright, A. A. (2008). A review of anti-nutritive factors limiting potential use of Acacia angustissima as a ruminant feed. Animal Feed Science and Technology 147: 158–171.CrossRefGoogle Scholar
Mawdsley, J. R. and Sithole, H. (2009). Diversity and abundance of insect visitors to flowers of trees and shrubs in a South African savannah. African Journal of Ecology 48: 691–698.Google Scholar
Miller, M. F. (1995). Acacia seed survival, seed germination and seedling growth following pod consumption by large herbivores and chewing by rodents. African Journal of Ecology 33: 194–210.CrossRefGoogle Scholar
Miller, J. T. and Bayer, R. J. (2001). Molecular phylogenetics of Acacia subgenus Acacia and Aculeiferum (Fabaceae: Mimosoideae), based on the chloroplast matK coding sequences and flanking trnK intron spacer regions. Australian Systematic Botany 16: 27–33.CrossRefGoogle Scholar
Mucina, L. and Rutherford, M. C., eds (2006). The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia, 19. Pretoria: South African National Biodiversity Institute.
Noble, I. R. and Slatyer, R. O. (1980). The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43: 5–21.CrossRefGoogle Scholar
Old, K. M., See, L. S., Sharma, J. K. and Yuan, Z. Q (2000). A Manual of Diseases of Tropical Acacias in Australia, South-East Asia and India. Jakarta, Indonesia: Center for International Forestry Research.Google Scholar
Orr, D. M. and Holmes, W. E. (1984). Mitchell grasslands. In Harrington, G. N., Wilson, A. D. and Young, M. D. (eds), Management of Australia’s Rangelands. Melbourne: CSIRO Publishing, pp. 241–254.Google Scholar
Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. and Simons, A. (2009). Agroforestree Database: a tree reference and selection guide, version 4.0. ()
Pandey, C. B. and Singh, J. S. (1992). Influence of rainfall and grazing on belowground dynamics in a dry tropical savanna. Canadian Journal of Botany 70: 1885–1890.CrossRefGoogle Scholar
Parrotta, J. A. (1992). Acacia farnesiana (L.) Willd. – Aroma, huisache. Research Note SO-ITF-SM-49. New Orleans: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station.Google Scholar
Pedley, L. (1986). Derivation and dispersal of Acacia (Leguminosae), with particular reference to Australia, and the recognition of Senegalia and Racosperma. Botanical Journal of the Linnean Society 92: 219–254.CrossRefGoogle Scholar
Pennington, T. D. and Sarukhan, J. (1968). Arboles tropicales de Mexico. Mexico City: Instituto Nacional de Investigaciones Forestales.Google Scholar
Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M. and Lowe, A. J., (2008). Adaptive evolution in invasive species. Trends in Plant Science 13: 288–294.CrossRefGoogle ScholarPubMed
Radford, I. J., Nicholas, D. M., Brown, J. R. and Kriticos, D. J. (2001). Paddock-scale patterns of seed production and dispersal in the invasive shrub Acacia nilotica (Mimosaceae) in northern Australian rangelands. Austral Ecology 26: 338–348.CrossRefGoogle Scholar
Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. and Rejmánek, M. (2000). Plant invasions: the role of mutualisms. Biological Reviews 75: 65–93.CrossRefGoogle ScholarPubMed
Roberts, R. G., Flannery, T. F., Ayliffe, L. K. et al. (2001). New ages for the last Australian megafauna: continent-wide extinction about 46 000 years ago. Science 292: 1888–1892.CrossRefGoogle ScholarPubMed
Rodríguez-Echeverría, S., le Roux, J. J., Crisóstomo, J. A. and Ndlovu, J. (2011). Jack-of-all-trades and master of many? How does associated rhizobial diversity influence the colonization success of Australian Acacia species?Diversity and Distributions 17: 946–995.CrossRefGoogle Scholar
Russell-Smith, J., Yates, C., Edwards, A. et al. (2003). Contemporary fire regimes of northern Australia, 1997–2001: change since Aboriginal occupancy, challenges for sustainable management. International Journal of Wildland Fire 12: 283–297.CrossRefGoogle Scholar
Stone, G. N., Raine, N. E., Prescott, M. and Willmer, P. G. (2003). Pollination ecology of Acacias (Fabaceae, Mimosoideae). Australian Systematic Botany 16: 103–118.CrossRefGoogle Scholar
Thrall, P. H., Laine, A.-L., Broadhurst, L. M., Bagnall, D. J. and Brockwell, J. (2011). Symbiotic effectiveness of rhizobial mutualists varies in interactions with native Australian legume genera. PLoS ONE 6: e23545. .CrossRefGoogle ScholarPubMed
Tilman, D. (1985). The resource-ratio hypothesis of plant succession. American Naturalist 125: 827–852.CrossRefGoogle Scholar
Tindale, M. D. and Kodela, P. G. (1996). Acacia valida (Fabaceae, Mimosoideae), a new species from Western Australia and the Northern Territory, as well as the typification and revision of A. pachyphloia. Australian Systematic Botany 9: 307–317.CrossRefGoogle Scholar
Tomlinson, K. W., Sterck, F. J., Bongers, F. et al. (2012). Biomass partitioning and root morphology of savanna trees across a water gradient. Journal of Ecology 110: 1113–1121.CrossRefGoogle Scholar
Tomlinson, K. W., Poorter, L., Sterck, F. J. et al. (2013). Leaf adaptations to moisture gradients of savanna trees of different leaf habit. Journal of Ecology 101: 430–440.CrossRefGoogle Scholar
Van Auken, O. W. (2000). Shrub invasions of North American semiarid grasslands. Annual Review of Ecology, Evolution and Systematics 31: 197–215.CrossRefGoogle Scholar
Van Auken, O. W. and Bush, J. K. (1997). Growth of Prosopis glandulosa in response to changes in aboveground and belowground interference. Ecology 78: 1222–1229.CrossRefGoogle Scholar
Van Der Waal, C., De Kroon, H., De Boer, W. F. et al. (2009). Water and nutrients alter herbaceous competitive effects on tree seedlings in a semi-arid savanna. Journal of Ecology 97: 430–439.CrossRefGoogle Scholar
Walter, H. (1939). Grassland, savanne und busch der arideren teile Afrikas in ihrer okologischen bedingheit. Jahrbücher für Wissenschaftliche Botanik 87: 750–860.Google Scholar
Walter, H. (1971). Ecology of Tropical and Subtropical Vegetation. Edinburgh: Oliver and Boyd.Google Scholar
Welch, J. R. (1960). Observations on deciduous woodland in the eastern province of Tanganyika. Journal of Ecology 48: 557–573.CrossRefGoogle Scholar
Williams, R. J., Myers, B. A., Muller, W. J., Duff, G. A. and Eamus, D. (1997). Leaf phenology of woody species in a north Australian tropical savanna. Ecology 78: 2542–2558.CrossRefGoogle Scholar
Wilson, J. R. U., Dormont, E. E., Prentis, P. J., Lowe, A. J. and Richardson, D. M. (2008). Something in the way you move: dispersal pathways affect invasion success. Trends in Ecology and Evolution 24: 136–144.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×