Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-14T06:00:46.037Z Has data issue: false hasContentIssue false

8 - Flying foxes and drifting continents

from Part I - Ancient invaders

Published online by Cambridge University Press:  05 February 2014

David A. Westcott
Affiliation:
CSIRO Ecosystem Sciences
Adam McKeown
Affiliation:
CSIRO Ecosystem Sciences
Herbert H. T. Prins
Affiliation:
Wageningen Universiteit, The Netherlands
Iain J. Gordon
Affiliation:
The James Hutton Institute, Scotland
Get access

Summary

Introduction

At some point, possibly as much as 55 Ma, but perhaps only as recently as sometime in the last few million years, the first pteropodid bat flew in from the north and crossed the coast of the Australian continent. This animal was arriving on a continent that was very different to the Australia we are familiar with today. Depending on exactly when it arrived, the continent was almost definitely a wetter, more forested place than it is today (see Chapter 12). If it arrived early, then both the flora and the fauna were still only beginning to evolve into the suite of species that we are familiar with and that flying fox may have been among the earliest of the eutherian mammals on the continent. If it arrived later, then it would have joined a diverse group of rats and other bats already present in the continent’s rich monotreme, metatherian and eutherian mammal communities. Irrespective of when exactly they arrived, the first individuals were arriving on a continent with a biota very different to that which they would have previously encountered.

Type
Chapter
Information
Invasion Biology and Ecological Theory
Insights from a Continent in Transformation
, pp. 138 - 158
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archer, M., Arena, R., Bassarova, M. et al. (1999). The evolutionary history and diversity of Australian mammals. Australian Mammalogy 21: 1–45.Google Scholar
Bacles, C. F. E., Brooks, J., Lee, D. J. et al. (2009). Reproductive biology of Corymbia citriodora subsp. variegata and effective pollination across its native range in Queensland, Australia. Southern Forests 71(2): 125–132.CrossRefGoogle Scholar
Bastian, S. T., Tanaka, K., Anunciado, R. V. P. et al. (2002). Evolutionary relationships of flying foxes (genus Pteropus) in the Philippines inferred from DNA sequences of cytochrome b gene. Biochemical Genetics 40(3–4): 101–116.CrossRefGoogle ScholarPubMed
Birt, P. K. (2004). Mutualistic interactions between the nectar-feeding little red flying fox Pteropus scapulatus (Chiroptera: Pteropodidae) and flowering eucalypts (Myrtaceae): habitat utilisation and pollination. Unpublished thesis, The University of Queensland.
Blackburn, T. M., Cassey, P. and Lockwood, J. L. (2009). The role of species traits in the establishment success of exotic birds. Global Change Biology 15(12): 2852–2860.CrossRefGoogle Scholar
Bomford, M., Darbyshire, R. O. and Randall, L. (2009). Determinants of establishment success for introduced exotic mammals. Wildlife Research 36(3): 192–202.CrossRefGoogle Scholar
Breed, A. C., Field, H. E., Smith, C. S., Edmonston, J. and Meers, J. (2010). Bats without borders: long-distance movements and implications for disease risk management. EcoHealth 7: 204–212.CrossRefGoogle ScholarPubMed
Brown, E. D. and Hopkins, M. J. G. (1996). How New Guinea rainforest flower resources vary in time and space: Implications for nectarivorous birds. Australian Journal of Ecology 21(4): 363–378.CrossRefGoogle Scholar
Byrne, M., Yeates, D. K., Joseph, L. et al. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17(20): 4398–4417.CrossRefGoogle ScholarPubMed
Carroll, J. B. (1984). The conservation and wild status of the Rodrigues fruit bat Pteropus rodrieemis. Myotis 21–22:148–154.Google Scholar
Cassey, P., Blackburn, T. M., Sol, S., Duncan, R. P. and Lockwood, J. L. (2004). Global patterns of introduction effort and establishment success in birds. Proceedings of the Royal Society of London Series B: Biological Sciences 271: S405–S408.CrossRefGoogle ScholarPubMed
Cheke, A. S. and Dahl, J. F. (1981). The status of bats in the Western Oceanic Islands with special reference to Pteropus. Mammalia 45: 205–238.CrossRefGoogle Scholar
Christidis, L. and Norman, J. A. (2010). Evolution of the Australasian songbird fauna. Emu 110(1): 21–31.CrossRefGoogle Scholar
Clulow, S. and Blundell, A. T. (2011). Deliberate insectivory by the fruit bat Pteropus poliocephalus by aerial hunting. Acta Chiropterologica 13(1): 201–205.CrossRefGoogle Scholar
Corbett, G. B. and Hill, J. E. (1992). The Mammals of the Indomalay Region: A Systematic Review. Oxford: Natural History Museum Publications, Oxford University Press.Google Scholar
Craig, P., Trail, P. and Morrell, T. E.. (1994). The decline of fruit bats in American Samoa due to hurricanes and overhunting. Biological Conservation 69: 261–266.CrossRefGoogle Scholar
Daschbach, N. (1990). After the hurricane. Bats 8: 14–15.Google Scholar
Davies, T. J., Barraclough, T. G., Chase, M. W. et al. (2004). ‘Darwin’s abominable mystery: insights from a supertree of the angiosperms’, Proceedings of the National Academy of Sciences of the United States of America 101(7): 1904–1909.CrossRefGoogle ScholarPubMed
Divljan, A., Parry-Jones, K. and Wardle, G. M. (2006). Age determination in the grey-headed flying fox. Journal of Wildlife Management 70(2): 607–611.CrossRefGoogle Scholar
Driessen, M. (2010). Recent sightings of flying foxes in Tasmania. The Tasmanian Naturalist 132: 35–39.Google Scholar
Ducrocq, S., Jaeger, J. and Sigé, B. (1993). Un mégachiroptère dans l’eocène supérieur de thailande incidence dan las discussion phylogénetique du group. Neues Jahrbuch fur Geoogie und Paläeontologie Monatschefte 1993: 561–575.Google Scholar
Eby, P. (1991). Seasonal movements of gray-headed flying foxes, Pteropus poliocephalus (Chiroptera, Pteropodidae), from 2 maternity camps in northern New South Wales. Wildlife Research 18(5): 547–559.CrossRefGoogle Scholar
Eby, P., Richards, G., Collins, L. and Parry-Jones, K. (1999). The distribution, abundance and vulnerability to population reduction of a nomadic nectarivore, the grey-headed flying fox Pteropus poliocephalus in New South Wales, during a resource concentration. Australian Zoologist 31: 240–253.CrossRefGoogle Scholar
Eiting, T. P. and Gunnell, G. F. (2009). Global completeness of the bat fossil record. Journal of Mammalian Evolution 16(3): 151–173.CrossRefGoogle Scholar
Epstein, J. H., Olival, K. J., Pulliam, J. R. C. et al. (2009). Pteropus vampyrus, a hunted migratory species with a multinational home-range and a need for regional management. Journal of Applied Ecology 46(5): 991–1002.CrossRefGoogle Scholar
Findley, J. S. (1969). Brain size in bats. Journal of Mammalogy 50: 340–344.CrossRefGoogle ScholarPubMed
Flannery, T. F. (1989). Flying foxes in Melanesia: populations at risk. Bats 7: 5–7.Google Scholar
Flannery, T. F. (1995). Mammals of the South-West Pacific and Moluccan Islands. Ithaca, NY: Cornell University Press.Google Scholar
Fleming, T. H. and Kress, W. J., (2011). A brief history of fruits and frugivores. Acta Oecologica 37: 521–530.CrossRefGoogle Scholar
Fleming, T. H. and Muchhala, N. (2008). Nectar-feeding bird and bat niches in two worlds: pantropical comparisons of vertebrate pollination systems. Journal of Biogeography 35(5): 764–780.CrossRefGoogle Scholar
Fleming, T. H., Geiselman, C. and Kress, W. J. (2009). The evolution of bat pollination: a phylogenetic perspective. Annals of Botany 104(6): 1017–1043.CrossRefGoogle ScholarPubMed
Forsyth, D. M., Duncan, R. P., Bomford, M. and Moore, G. (2004). Climatic suitability, life-history traits, introduction effort, and the establishment and spread of introduced mammals in Australia. Conservation Biology 18(2): 557–569.CrossRefGoogle Scholar
Fox, S., Luly, J., Mitchell, C., Maclean, J., and Westcott, D. A. (2008a). ‘Demographic indications of decline in the spectacled flying fox (Pteropus conspicillatus) on the Atherton Tablelands of northern Queensland. Wildlife Research 35(5): 417–424.CrossRefGoogle Scholar
Fox, S., Spencer, H. and O’Brien, G. M. (2008b). Analysis of twinning in flying foxes (Megachiroptera) reveals superfoetation and multiple-paternity. Acta Chiropterologica 10(2): 271–278.CrossRefGoogle Scholar
Franklin, D. C. and Noske, R. A. (1999). Birds and nectar in a monsoonal woodland: Correlations at three spatio-temporal scales. Emu 99: 15–28.CrossRefGoogle Scholar
Giannini, N. P. and Simmons, N. B. (2003). A phylogeny of megachiropteran bats (Mammalia : Chiroptera : Pteropodidae) based on direct optimization analysis of one nuclear and four mitochondrial genes. Cladistics: The International Journal of the Willi Hennig Society 19(6): 496–511.CrossRefGoogle Scholar
Giannini, N. P. and Simmons, N. B. (2005). Conflict and congruence in a combined DNA–morphology analysis of megachiropteran bat relationships (Mammalia: Chiroptera: Pteropodidae). Cladistics 21(5): 411–437.CrossRefGoogle Scholar
Goldingay, R. L., Carthew, S. M. and Whelan, R. J. (1991). The importance of nonflying mammals in pollination. Oikos 61(1): 79–87.CrossRefGoogle Scholar
Goodman, S. M., Chan, L. M., Nowak, M. D. and Yoder, A. D. (2010). Phylogeny and biogeography of western Indian Ocean Rousettus (Chiroptera: Pteropodidae). Journal of Mammalogy 91(3): 593–606.CrossRefGoogle Scholar
Greenwood, D. R. (1994). Palaeobotanical evidence for Tertiary climates. In Hill, R. S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press, pp. 44–59.Google Scholar
Hall, L. and Richards, G. (2000). Flying Foxes: Fruit and Blossom Bats of Australia, Sydney, Australia: University of New South Wales.Google Scholar
Hand, S., Beck, R., Worthy, T., Archer, M. and Sige, B. (2007). Australian and New Zealand bats: the origin, evolution, and extinction of bat lineages in Australasia. Journal of Vertebrate Paleontology 27(3): 86A.Google Scholar
Hand, S., Novacek, M., Godthelp, H. and Archer, M. (1994). First Eocene bat from Australia. Journal of Vertebrate Paleontology 14(3): 375–381.CrossRefGoogle Scholar
Hansman, D. J. (2001). Floral biology of dry rainforest in north Queensland and a comparison with adjacent savanna woodland. Australian Journal of Botany 49(2): 137–153.CrossRefGoogle Scholar
Hayes, K. R. and Barry, S. C. (2008). Are there any consistent predictors of invasion success?Biological Invasions 10(4): 483–506.CrossRefGoogle Scholar
Jeschke, J. M. and Strayer, D. L. (2006). Determinants of vertebrate invasion success in Europe and North America. Global Change Biology 12(9): 1608–1619.CrossRefGoogle Scholar
Jones, K. E., Bininda-Emonds, O. R. P. and Gittleman, J. L. (2005). Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution 59(10): 2243–2255.CrossRefGoogle ScholarPubMed
Jonsson, K. A., Fabre, P. H., Ricklefs, R. E. and Fjeldsa, J. (2011). Major global radiation of corvoid birds originated in the proto-Papuan archipelago. Proceedings of the National Academy of Sciences of the United States of America 108(6): 2328–2333.CrossRefGoogle ScholarPubMed
Kershaw, A. P., Martin, H. A. and Mason, J. R. C. McEwen (1994). The Neogene: a period of transition. In Hill, R. S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press, pp. 299–327.Google Scholar
Kofron, C. P. (1997). Reproduction of two species of congeneric fruit bats (Cynopterus) in Brunei, Borneo. Journal of Zoology 243: 485–506.CrossRefGoogle Scholar
Kofron, C. P. (2007a). Reproduction of the dusky fruit bat Penthetor lucasi (Pteropodidae) in Brunei, Borneo. Mammalia 71(4): 166–171.CrossRefGoogle Scholar
Kofron, C. P. (2007b). Reproduction of the spotted-winged fruit bat Balionycteris maculata (Thomas 1893) in Brunei, Borneo (Megachiroptera Pteropodidae). Tropical Zoology 20(2): 187–195.Google Scholar
Kofron, C. P. (2008). Reproduction of the long-tongued nectar bat Macroglossus minimus (Pteropodidae) in Brunei, Borneo. Acta Zoologica 89(1): 53–58.CrossRefGoogle Scholar
Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15: 259–263.CrossRefGoogle Scholar
Ladiges, P. Y., Udovicic, F. and Nelson, G. (2003). Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. Journal of Biogeography 30(7): 989–998.CrossRefGoogle Scholar
Law, B., Mackowski, C., Schoer, L. and Tweedie, T. (2000). Flowering phenology of myrtaceous trees and their relation to climatic, environmental and disturbance variables in northern New South Wales. Austral Ecology 25(2): 160–178.CrossRefGoogle Scholar
Law, B. S. (1993). Roosting and foraging ecology of the Queensland blossom bat (Synycteris australis) in north-eastern New South Wales: flexibility in response to seasonal variation. Wildlife Research 20(4): 419–431.CrossRefGoogle Scholar
Law, B. S. (1996). Residency and site fidelity of marked populations of the common blossom bat Syconycteris australis in relation to the availability of Banksia inflorescences in New South Wales, Australia. Oikos 77: 447–458.CrossRefGoogle Scholar
Law, B. S. and Lean, M. (1999). Common blossom bats (Syconycteris australis) as pollinators in fragmented Australian tropical rainforest. Biological Conservation 91(2–3): 201–212.CrossRefGoogle Scholar
Law, B. S. and Spencer, H. J. (1995). Common blossom-bat, Syconycteris australis. In Strahan, R. (ed.), The Mammals of Australia, 2nd edn. Sydney: New Holland Publishers, Pty. Ltd., pp. 423–425.Google Scholar
Leroy, E. M., Epelboin, A., Mondonge, V. et al. (2009). Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector-Borne and Zoonotic Diseases 9(6): 723–728.CrossRefGoogle ScholarPubMed
Lockwood, J. L., Cassey, P. and Blackburn, T. (2005). The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution 20(5): 223–228.CrossRefGoogle ScholarPubMed
McConkey, K. R., Drake, D. R., Franklin, J. and Tonga, F. (2004). Effects of Cyclone Waka on flying foxes (Pteropus tonganus) in the Vava’u Islands of Tonga. Journal of Tropical Ecology 20: 555–561.CrossRefGoogle Scholar
McIllwee, A. P. and Martin, L. (2002). On the intrinsic capacity for increase of Australian flying foxes (Pteropus spp., Megachiroptera). Australian Zoologist 32: 76–100.CrossRefGoogle Scholar
Malekian, M., Cooper, S. J. B., Norman, J. A., Christidis, L. and Carthew, S. M. (2010). Molecular systematics and evolutionary origins of the genus Petaurus (Marsupialia: Petauridae) in Australia and New Guinea. Molecular Phylogenetics and Evolution 54(1): 122–135.CrossRefGoogle ScholarPubMed
Martin, H. A. (1994). Australian Tertiary phytogeography: evidence from palynology. In Hill, R. S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press, pp. 104–142.Google Scholar
Martin, H. A. (2006). Cenozoic climatic changes and the development of the arid vegetation of Australia. Journal of Arid Environments 66: 533–563.CrossRefGoogle Scholar
Martin, L., Kennedy, J. H., Little, L. et al. (1995). The reproductive biology of Australian flying foxes (genus Pteropus). Symposia of the Zoological Society of London 67: 167–184.Google Scholar
Meredith, R., Mendoza, M., Roberts, K., Westerman, M. and Springer, M. (2010). A phylogeny and timescale for the evolution of Pseudocheiridae (Marsupialia: Diprotodontia) in Australia and New Guinea. Journal of Mammalian Evolution 17(2): 75–99.CrossRefGoogle ScholarPubMed
Mickleburgh, S. P. H., Anthony, M. and Racey, P. A. (1992). Old World Fruit Bats : An Action Plan for their Conservation. Gland, Switzerland: IUCN.CrossRefGoogle Scholar
O’Brien, J., Mariani, C., Olson, L. et al. (2009). Multiple colonisations of the western Indian Ocean by Pteropus fruit bats (Megachiroptera: Pteropodidae): the furthest islands were colonised first. Molecular Phylogenetics and Evolution 51(2): 294–303.CrossRefGoogle ScholarPubMed
Parry-Jones, K. A. and Augee, M. L. (1992). Movements of grey-headed flying foxes (Pteropus poliocephalus) to and from colony site on the central coast of New South Wales. Wildlife Research 19: 331–339.CrossRefGoogle Scholar
Parry-Jones, K. A. and Augee, M. L. (2001). Factors affecting the occupation of a colony site in Sydney, New South Wales by the grey-headed flying fox Pteropus poliocephalus (Pteropodidae). Austral Ecology 26(1): 47–55.Google Scholar
Parsons, J. G., Cairns, A., Johnson, C. N. et al. (2006). Dietary variation in spectacled flying foxes (Pteropus conspicillatus) of the Australian Wet Tropics. Australian Journal of Zoology 54(6): 417–428.CrossRefGoogle Scholar
Pierson, E. D., Elmqvist, T., Rainey, W. E. and Cox, P. A. (1996). Effects of tropical cyclonic storms on flying fox populations on the South Pacific islands of Samoa. Conservation Biology 10: 438–451.CrossRefGoogle Scholar
Pyke, G. H. (1983). Seasonal pattern of abundance of honeyeaters and their resources in heathland areas near Sydney. Australian Journal of Ecology 8(3): 217–233.CrossRefGoogle Scholar
Pyke, G. H. (1989). Effects of flower removal on abundance and behavior of honeyeaters in heathland near Sydney. Australian Journal of Ecology 14(4): 415–421.CrossRefGoogle Scholar
Roberts, B. J., Catterall, C. P., Eby, P. and Kanowski, J. (2012). Latitudinal range shifts in Australian flying foxes: a re-evaluation. Austral Ecology 37: 12–22.CrossRefGoogle Scholar
Shilton, L. A., Latch, P. J., McKeown, A., Pert, P., and Westcott, D. A. (2008). Landscape-scale redistribution of a highly mobile threatened species, Pteropus conspicillatus (Chiroptera, Pteropodidae), in response to Tropical Cyclone Larry. Austral Ecology 33(4): 549–561.CrossRefGoogle Scholar
Sigé, B. and Aguilar, J.-P. (1987). L’extension stratigrafique des mégachiroptères dan le miocène d’europe méridionale. Comptes Rendus de l’Acadamie des. Sciences 314: 469–475.Google Scholar
Simberloff, D. (2009). The role of propagule pressure in biological invasions. Annual Review of Ecology Evolution and Systematics 40: 81–102.CrossRefGoogle Scholar
Simmons, N. B. (2005). Order Chiroptera. In Wilson, D. E. and Reeder, D. M. (eds), Mammal Species of the World. A Taxonomic and Geographic Reference, 3rd edn. Baltimore, MD: Johns Hopkins University Press, pp. 312–529.Google Scholar
Sol, D., Bacher, S., Reader, S. M. and Lefebvre, L. (2008). Brain size predicts the success of mammal species introduced into novel environments. American Naturalist 172: S63–S71.CrossRefGoogle ScholarPubMed
Spencer, H. J., Palmer, C. and Parry-Jones, K. (1991). Movements of fruit-bats in eastern Australia, determined by using radio-tracking. Wildlife Research 18(4): 463–468.CrossRefGoogle Scholar
Stephan, H., Nelson, J. E. and Frahm, H. D. (1981). Brain size comparison in Chiroptera. Journal of Zoological Systematics and Evolutionary Research 19(3): 195–222.CrossRefGoogle Scholar
Sussman, R. W. and Raven, P. H. (1978). Pollination by lemurs and marsupials: archaic coevolutionary system. Science 200: 731–736.CrossRefGoogle ScholarPubMed
Teeling, E. C., Springer, M. S., Madsen, O. et al. (2005). A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307(5709): 580–584.CrossRefGoogle ScholarPubMed
Thomson, S. C., Brooke, A. P. and Speakman, J. R. (1998). Diurnal activity in the Samoan flying fox, Pteropus samoensis. Philosophical Transactions of the Royal Society B: Biological Sciences 353: 1595–1606.CrossRefGoogle Scholar
Tidemann, C. R. (1999). Biology and management of the grey-headed flying fox, Pteropus poliocephalus. Acta Chiropterologica 1: 151–164.Google Scholar
Tidemann, C. R. and Nelson, J. E. (2004). Long-distance movements of the grey-headed flying fox (Pteropus poliocephalus). Journal of Zoology 263: 141–146.CrossRefGoogle Scholar
Tingley, R., Phillips, B. L. and Shine, R. (2011). Establishment success of introduced amphibians increases in the presence of congeneric species. The American Naturalist 177(3): 382–388.CrossRefGoogle ScholarPubMed
Van Dycke, S. and Strahan, R., eds (2008). The Mammals of Australia, 3rd edn. Chatswood, Australia: Reed New Holland.
Vardon, M. J. and Tidemann, C. R. (1998). Reproduction, growth and maturity in the black flying fox, Pteropus alecto (Megachiroptera : Pteropodidae). Australian Journal of Zoology 46: 329–344.CrossRefGoogle Scholar
Vardon, M. J. and Tidemann, C. R. (1999). Flying foxes (Pteropus alecto and P. scapulatus) in the Darwin region, north Australia: patterns in camp size and structure. Australian Journal of Zoology 47(4): 411–423.CrossRefGoogle Scholar
Vardon, M. J. and Tidemann, C. R. (2000). The black flying fox (Pteropus alecto) in north Australia: juvenile mortality and longevity. Australian Journal of Zoology 48: 91–97.CrossRefGoogle Scholar
Vardon, M. J., Brocklehurst, P. S., Woinarski, J. C. Z. et al. (2001). Seasonal habitat use by flying foxes, Pteropus alecto and P. scapulatus (Megachiroptera), in monsoonal Australia. Journal of Zoology 253: 523–535.CrossRefGoogle Scholar
Westcott, D., Dennis, A., Bradford, M., McKeown, A. and Harrington, G. (2008). Seed dispersal processes in Australia’s Wet Tropics rainforests. In Stork, N. and Turton, S. (eds), Living in a Dynamic Tropical Forest Landscape. Malden, UK: Blackwell Publishing, pp. 210–223.Google Scholar
Westcott, D. A., Dennis, A. J., McKeown, A., Bradford, M. and Margules, C. (2001). The Spectacled Flying Fox, Pteropus conspicillatus, in the Context of the World Heritage Values of the Wet Tropics World Heritage Area. Atherton, Australia: CSIRO.Google Scholar
Wibbelt, G., Moore, M. S., Schountz, T. and Voigt, C. C. (2010). Emerging diseases in Chiroptera: why bats?Biology Letters 6: 438–440.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×