Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-13T04:39:13.838Z Has data issue: false hasContentIssue false

Higher-order abstract syntax in type theory

Published online by Cambridge University Press:  28 January 2010

S. Barry Cooper
Affiliation:
University of Leeds
Herman Geuvers
Affiliation:
Radboud Universiteit Nijmegen
Anand Pillay
Affiliation:
University of Leeds
Jouko Väänänen
Affiliation:
University of Amsterdam and University of Helsinki
Get access

Summary

Abstract. We develop a general tool to formalize and reason about languages expressed using higher-order abstract syntax in a proof-tool based on type theory (Coq). A language is specified by its signature, which consists of sets of sort and operation names and typing rules. These rules prescribe the sorts and bindings of each operation. An algebra of terms is associated to a signature, using de Bruijn notation. Then a higher-order notation is built on top of the de Bruijn level, so that the user can work with meta-variables instead of de Bruijn indices. We also provide recursion and induction principles formulated directly on the higher-order syntax. This generalizes work on the Hybrid approach to higher-order syntax in Isabelle and our earlier work on a constructive extension to Hybrid formalized in Coq. In particular, a large class of theorems that must be repeated for each object language in Hybrid is done once in the present work and can be applied directly to each object language.

Introduction. We aim to use proof assistants (in our specific case Coq [9, 6]) to formally represent and reason about languages using higher-order syntax, i.e. object languages where binding operators are expressed using binding at the meta-level. This is an active and fertile field of research. Several methods contend to become the most elegant, efficient, and easy to use. The differences stem from the approach of the researchers and the characteristics of the proof tool used.

Our starting point was the work on the Hybrid tool in Isabelle/HOL by Ambler, Crole, and Momigliano [2].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×