Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T04:40:27.609Z Has data issue: false hasContentIssue false

The inevitability of logical strength: Strict reverse mathematics

Published online by Cambridge University Press:  28 January 2010

S. Barry Cooper
Affiliation:
University of Leeds
Herman Geuvers
Affiliation:
Radboud Universiteit Nijmegen
Anand Pillay
Affiliation:
University of Leeds
Jouko Väänänen
Affiliation:
University of Amsterdam and University of Helsinki
Get access

Summary

Abstract. An extreme kind of logic skeptic claims that “the present formal systems used for the foundations of mathematics are artificially strong, thereby causing unnecessary headaches such as the Gödel incompleteness phenomena”. The skeptic continues by claiming that “logician's systems always contain overly general assertions, and/or assertions about overly general notions, that are not used in any significant way in normal mathematics. For example, induction for all statements, or even all statements of certain restricted forms, is far too general – mathematicians only use induction for natural statements that actually arise. If logicians would tailor their formal systems to conform to the naturalness of normal mathematics, then various logical difficulties would disappear, and the story of the foundations of mathematics would look radically different than it does today. In particular, it should be possible to give a convincing model of actual mathematical practice that can be proved to be free of contradiction using methods that lie within what Hilbert had in mind in connection with his program”. Here we present some specific results in the direction of refuting this point of view, and introduce the Strict Reverse Mathematics (SRM) program. See Corollary 11.12.

Many sorted free logic, completeness. We present a flexible form of many sorted free logic, which is essentially the same as the one we found presented in [Fe95], Section 3. In [Fe95], Feferman credits this form of many sorted free logic to [Pl68, Fe75, Fe79], and [Be85, page 97–99].

We prefer to use many sorted free logic rather than ordinary logic, because we are particularly interested in the naturalness of our axioms, and want to avoid any cumbersome or ad hoc features.

Type
Chapter
Information
Logic Colloquium 2006 , pp. 135 - 183
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×