Book contents
- Frontmatter
- Contents
- Preface
- Preface to the First Edition
- 1 Introduction and Background
- 2 Fundamentals of Inviscid, Incompressible Flow
- 3 General Solution of the Incompressible, Potential Flow Equations
- 4 Small-Disturbance Flow over Three-Dimensional Wings: Formulation of the Problem
- 5 Small-Disturbance Flow over Two-Dimensional Airfoils
- 6 Exact Solutions with Complex Variables
- 7 Perturbation Methods
- 8 Three-Dimensional Small-Disturbance Solutions
- 9 Numerical (Panel) Methods
- 10 Singularity Elements and Influence Coefficients
- 11 Two-Dimensional Numerical Solutions
- 12 Three-Dimensional Numerical Solutions
- 13 Unsteady Incompressible Potential Flow
- 14 The Laminar Boundary Layer
- 15 Enhancement of the Potential Flow Model
- A Airfoil Integrals
- B Singularity Distribution Integrals
- C Principal Value of the Lifting Surface Integral IL
- D Sample Computer Programs
- Index
Preface
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- Preface to the First Edition
- 1 Introduction and Background
- 2 Fundamentals of Inviscid, Incompressible Flow
- 3 General Solution of the Incompressible, Potential Flow Equations
- 4 Small-Disturbance Flow over Three-Dimensional Wings: Formulation of the Problem
- 5 Small-Disturbance Flow over Two-Dimensional Airfoils
- 6 Exact Solutions with Complex Variables
- 7 Perturbation Methods
- 8 Three-Dimensional Small-Disturbance Solutions
- 9 Numerical (Panel) Methods
- 10 Singularity Elements and Influence Coefficients
- 11 Two-Dimensional Numerical Solutions
- 12 Three-Dimensional Numerical Solutions
- 13 Unsteady Incompressible Potential Flow
- 14 The Laminar Boundary Layer
- 15 Enhancement of the Potential Flow Model
- A Airfoil Integrals
- B Singularity Distribution Integrals
- C Principal Value of the Lifting Surface Integral IL
- D Sample Computer Programs
- Index
Summary
Our goal in writing this Second Edition of Low-Speed Aerodynamics remains the same, to present a comprehensive and up-to-date treatment of the subject of inviscid, incompressible, and irrotational aerodynamics. It is still true that for most practical aerodynamic and hydrodynamic problems, the classical model of a thin viscous boundary layer along a body's surface, surrounded by a mainly inviscid flowfield, has produced important engineering results. This approach requires first the solution of the inviscid flow to obtain the pressure field and consequently the forces such as lift and induced drag. Then, a solution of the viscous flow in the thin boundary layer allows for the calculation of the skin friction effects.
The First Edition provides the theory and related computational methods for the solution of the inviscid flow problem. This material is complemented in the Second Edition with a new Chapter 14, “The Laminar Boundary Layer,” whose goal is to provide a modern discussion of the coupling of the inviscid outer flow with the viscous boundary layer. First, an introduction to the classical boundary-layer theory of Prandtl is presented. The need for an interactive approach (to replace the classical sequential one) to the coupling is discussed and a viscous–inviscid interaction method is presented. Examples for extending this approach, which include transition to turbulence, are provided in the final Chapter 15.
In addition, updated versions of the computational methods are presented and several topics are improved and updated throughout the text.
- Type
- Chapter
- Information
- Low-Speed Aerodynamics , pp. xiii - xivPublisher: Cambridge University PressPrint publication year: 2001